期刊文献+

基于CNN-BiLSTM-Attention的三峡库区滑坡地表位移预测研究

Research on predicting surface displacement of landslides based on CNNBiLSTM-Attention in the Three Gorges reservoir area
下载PDF
导出
摘要 地表位移预测在滑坡监测预警中具有重要意义,建立稳定可靠的滑坡位移预测模型是关键。本文基于卷积神经网络和注意力机制的滑坡位移预测方法,并以三峡库区黄泥巴蹬坎滑坡为例进行了验证。本文综合分析了该滑坡长达8年的降雨量、库水位和地表位移等监测数据,建立了结合卷积神经网络(convolutional neural network,CNN)、双向长短期记忆(bidirectional long short-term memory,BiLSTM)网络和注意力机制(attention)的CNN-BiLSTM-Attention深度学习组合预测模型,采用了适应性学习率和正则化技术进行模型训练,提高了模型的泛化能力同时避免过拟合,并与传统LSTM模型进行对比验证。结果表明:相较于传统的机器学习和神经网络方法,该模型在滑坡位移预测精度上取得了显著提升,预测模型拟合优度(R^(2))达0.989,平均绝对百分比误差(MAPE)仅为0.059。 Surface displacement prediction is of great significance in landslide monitoring and early warning,and establishing a stable and reliable landslide displacement prediction model is crucial.This paper utilizes a convolutional neural network(CNN)and attention mechanism to predict landslide displacement,and takes the Huangniba Dengkan landslide in the Three Gorges reservoir area as an example for verification.This paper comprehensively analyzes the landslide's monitoring data on rainfall,reservoir water level,and surface displacement for 8 years.It establishes a CNN-BiLSTM-Attention deep learning combination prediction model,and uses adaptive learning rate and regularization techniques for model training,improving the generalization ability of the model while avoiding overfitting.Additionally,the model is subjected to comparative validation with the traditional long short-term memory(LSTM)model.The results show that the model's landslide displacement prediction accuracy has been significantly enhanced compared to traditional machine learning and neural network methods.The prediction model's goodness of fit(R^(2))reaches 0.989,and the mean absolute percentage error(MAPE)is merely 0.059.
作者 陈欢 冯晓亮 刘一民 赵晗 刘洋 郭浪 张军 CHEN Huan;FENG Xiaoliang;LIU Yimin;ZHAO Han;LIU Yang;GUO Lang;ZHANG Jun(Institute of Exploration Technology,CGS,Chengdu 611734,China;Technology Innovation Center for Risk Prevention and Mitigation of Geohazard,Ministry of Natural Resources,Chengdu 611734,China;School of Intelligent Manufacturing,Chengdu Technological University,Chengdu 611730,China;Geological Environment Monitoring Station of Yunyang County,Chongqing 404500,China;Chongqing 107 Municipal Construction Engineering Co.,Ltd.,Chongqing 401120,China)
出处 《沉积与特提斯地质》 CAS CSCD 北大核心 2024年第3期572-581,共10页 Sedimentary Geology and Tethyan Geology
基金 国家自然科学青年基金资助项目“断层面库仑应力变化监测方法的力学机理实验研究”(41804089) 中国地质调查局项目“地质灾害监测预警与防治支撑(探矿工艺所)”(DD20230447)。
关键词 滑坡监测 地表位移 注意力机制 预测模型 三峡库区 landslide monitoring surface displacement attention mechanism predictive model Three Gorges reservoir area
  • 相关文献

参考文献5

二级参考文献44

共引文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部