期刊文献+

基于换热管束优化布置的固态储氢反应器储氢性能模拟研究

Simulation of hydrogen storage performance in solid-state hydrogen storage reactor based on optimal arrangement of heat exchange tube bundles
下载PDF
导出
摘要 为探究固态储氢反应器内的热质传递过程,建立了反应器的二维数值计算模型,分析了反应器内固态储氢材料的径向反应分率分布特性,以及储氢材料床层厚度与换热管径对饱和半径的影响规律,进而开展了换热管束优化布置研究。结果表明:换热管存在对应的最大饱和半径,且随管径增加而增大;当管半径为1.00~6.00 mm的单管布置时,最大饱和半径分别为2.60、3.30、3.50、3.70、3.80、3.90 mm,其中半径为1.00、2.00、3.00 mm的换热管体积分数较小,分别为7.72%、14.24%、21.30%,当这3种换热管以管束布置时,较优的管间床层厚度分别为4.86、6.09、6.38 mm;此外,增设换热管束可有效改善反应器内反应死区的储氢性能。在半径2.00 mm换热管束的反应器内,与未增设换热管束相比,在反应死区增设12根半径1.00 mm换热管后储氢时间减少了40.00%,为267 s,而换热管束体积分数仅增加了1.92%,储氢量仅减少2.17%。该研究成果可为固态储氢反应器的优化设计奠定基础,并为后续的工程应用提供指导。 To explore the heat and mass transfer process in a solid-state hydrogen storage reactor,a two-dimensional numerical calculation model for the reactor is developed.The radial reaction rate distribution characteristics of the solid-state hydrogen storage material within the reactor is investigated,and the influence laws of bed thickness of the hydrogen storage material and diameter of the heat exchange tube on saturation radius are also studied.Based on this,the arrangement of the heat exchange tube bundle is optimized.The results show that,the heat exchange tube has the corresponding maximum saturation radius,and it increases with the tube radius.When the tube radius is 1.00~6.00 mm with single-tube arrangement,the maximum saturation radius is 2.60,3.30,3.50,3.70,3.80 and 3.90 mm,respectively.The volume fraction of heat exchange tubes with radius of 1.00,2.00 and 3.00 mm is relatively small,which is 7.72%,14.24%and 21.30%.The optimal bed thickness between tubes is 4.86,6.09 and 6.38 mm when arranging the above three types of tubes in a tube bundle.Moreover,adding heat exchange tube bundles can effectively improve the hydrogen storage performance of reaction dead zone in the reactor.In the reactor equipped with heat exchange tube bundles with radius of 2.00 mm,adding 12 heat exchange tubes with radius of 2.00 mm in the reaction deadzone can reduce the hydrogen storage time to 267 s(by 40.00%),while the volume fraction of tube bundle only increases by 1.92%,and the hydrogen storage capacity just decreases by 2.17%.The research findings can establish a fundamental basis for the optimal design of solid-state hydrogen storage reactors and offer valuable guidance for subsequent engineering applications.
作者 陈泽祺 曹红梅 田忠玉 张民 朱世铭 时德泰 高明 CHEN Zeqi;CAO Hongmei;TIAN Zhongyu;ZHANG Min;ZHU Shiming;SHI Detai;GAO Ming(Shandong Engineering Research Center for High-efficiency Energy Storage and Hydrogen Energy Utilization,School of Energy and Power Engineering,Shandong University,Jinan 250061,China;Huaneng Shandong Power Generation Co.,Ltd.,Jinan 250014,China;Huaneng Qingdao Thermal Power Co.,Ltd.,Qingdao 266000,China;Huaneng International Power Generation Co.,Ltd.Rizhao Power Plant,Rizhao 276800‚China)
出处 《热力发电》 CAS CSCD 北大核心 2024年第9期100-108,共9页 Thermal Power Generation
基金 中国华能集团有限公司总部科技项目(HNKJ24-HF36) 广东省自然科学基金项目(2023A1515012808)。
关键词 固态储氢 换热管束 储氢性能 饱和半径 数值模拟 solid state hydrogen storage heat exchange tube bundles hydrogen storage performance saturation radius numerical simulation
  • 相关文献

参考文献1

  • 1王兴国..金属氢化物吸/放氢过程及储氢容器性能模拟研究[D].大连理工大学,2021:

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部