摘要
轮缘推进器是近年来发展起来的一种无轴组合式特种推进器。与传统推进器相比,轮缘推进器在水动力设计和性能分析方面存在诸多挑战,水动力性能的研究对轮缘推力器的设计和应用具有重要意义。为了研究几何参数对轮缘推力器水动力性能的影响,本文以7叶轮缘驱动推力器为基本模型,基于面元法原理,利用编译的面元法代码对轮缘推力器在开阔水域的工作状态进行了数值模拟。通过求解每个面元的速度场,计算了水动力性能和叶片表面压力分布。此外,本文选择了几个典型的几何特征,如螺距比和叶片数,通过进行变参数分析,比较了不同几何参数下轮缘推力器的敞水性能。结果表明:本文的相关研究对轮缘推力器的设计和开发具有参考价值。
Rim-driven thrusters are shaftless combined special propellers developed in recent years.Compared with traditional propellers,rim-driven thrusters face many challenges in hydrodynamic design and performance analysis.Thus,research on hydrodynamic performance plays an important role in the design and application of rim-driven thrusters.This paper aims to discuss the influence of geometric parameters on the hydrodynamic performance of rim-driven thrusters.Based on the basic model of a seven-blade rim-driven thruster and the theory of the panel ele-ment method,the working state of a rim-driven thruster in open waters is numerically simulated using the compiled program code of the panel element method.By solving the velocity field of each panel element,the hydrodynamic performance and pressure distribution on the blade surface of the rim-driven thruster are calculated.Further,typi-cal geometric characteristics,such as pitch ratio and number of blades,are selected for variable parameter analy-sis.The open-water performance of the rim-driven thruster is studied by comparing different geometric parameters.The results show that related research methods and conclusions in this paper have reference value for the design and development of rim-driven thrusters.
作者
王旭
胡健
WANG Xu;HU Jian(College of Shipbuilding Engineering,Harbin Engineering University,Harbin 150009,China)
出处
《哈尔滨工程大学学报》
EI
CAS
CSCD
北大核心
2024年第9期1648-1654,共7页
Journal of Harbin Engineering University
基金
国家自然科学基金项目(51679045,51579052)
海洋设备预研基金项目(6141B42862,61402100201,61402070304)
重点实验室预研基金项目(6142204180408,6142407180108).
关键词
面元法
轮缘推进器
水动力
螺距比
侧斜角
盘面比
桨叶数
敞水性能
panel element method
rim-driven thruster
hydrodynamic force
pitch ratio
skew angle
panel area ratio
number of blades
open-water performance