摘要
光伏阵列在局部遮阴下的输出具有多峰特性,且随工况变化而变化.针对传统的最大功率点跟踪(maximum power point tracking,简称MPPT)算法易陷入局部最优、跟踪时间较长,进而导致光伏发电效率低下的缺陷,提出局部遮阴下光伏多峰MPPT改进混合算法.该文算法包括最大功率点(maximum power point,简称MPP)前期全局搜索及后期局部搜索两部分.在MPP全局搜索阶段,采用惯性权重自适应调整的量子粒子群优化算法,将光伏阵列工作点移至MPP所在的单峰区间,在优化过程中对粒子群进行自适应t分布变异,引入禁忌搜索算法.在MPP局部搜索阶段,采用基于闭环模糊控制的变步长扰动观察法,将光伏阵列工作点快速精准调整至MPP.仿真结果表明:相对于其他4种算法,该文算法有更高的跟踪效率和跟踪精度,能更有效提高光伏发电效率.因此,该文算法具有优越性.
The output of photovoltaic array under partial shading conditions has multi-peak characteristics,and changes with the operating conditions.Aiming at the defects of low photovoltaic power generation efficiency of traditional maximum power point tracking(MPPT)algorithms,which converged to local optimum easily and require long tracking time,the improved hybrid algorithm for photovoltaic multi-peak MPPT under partial shading was proposed,which included two parts:the early global search and the late local search of the maximum power point(MPP).In the MPP global search,the operating point of photovoltaic array was moved to the single-peak range containing the MPP by the quantum particle swarm optimization algorithm with self-adapting adjustment of inertia weight,the adaptive t-distribution mutation was applied to the particle swarm and the taboo search algorithm was introduced during the optimization process.In the MPP local search,the variable step-size disturbance observation method based on closed-loop fuzzy control was used to adjust the operating point of photovoltaic array to the MPP quickly and accurately.The simulation results showed that the MPPT algorithm in this paper had higher tracking efficiency and higher tracking accuracy compared with the other four algorithms,which could effectively improve the efficiency of photovoltaic power generation.Therefore,the algorithm in this paper had superiority.
作者
方胜利
朱晓亮
马春艳
侯贸军
FANG Shengli;ZHU Xiaoliang;MA Chunyan;HOU Maojun(College of Electrical and Information Engineering,Hubei University of Automotive Technology,Shiyan 442002,China;Shiyan Juneng Power Design Co.,Ltd.,Shiyan 442000,China)
出处
《安徽大学学报(自然科学版)》
CAS
北大核心
2024年第5期57-65,共9页
Journal of Anhui University(Natural Science Edition)
基金
湖北省教育厅科学技术研究中青年人才基金资助项目(Q20171802)
2022年度十堰市市级引导性科研项目(22Y04)。
关键词
光伏阵列
局部遮阴
MPPT
量子粒子群优化
自适应t分布
photovoltaic array
partial shade
MPPT
quantum particle swarm optimization
adaptive t-distribution