期刊文献+

中亚地区2001-2020年250 m及2020年30 m分辨率植被生长季NDVI数据集

A dataset of NDVI for the vegetation growing season in Central Asia with a resolution of 250 m(2001-2020)and 30 m(2020)
下载PDF
导出
摘要 中亚地区是北半球最大的干旱和半干旱区,其生态环境十分脆弱,对全球气候变化的响应较为敏感。由于该区域的特殊地理位置,维护该区域生态系统的稳定对全球经济社会发展至关重要。植被具有重要的生态环境指示作用,其时空分布格局和变化趋势是评估区域生态状况的重要指标。归一化植被指数(Normalized Difference Vegetation Index,NDVI)作为研究植被最常用的遥感指数之一,能够表征植被的时空变化特征。本数据集利用MODIS13Q1产品生成了中亚地区2001–2020年长时间序列空间分辨率为250 m的生长季均值NDVI数据,并使用基于规则的分段回归Cubist算法,结合Landsat数据,融合得到了能够更好表征地物细节的30 m空间分辨率的2020年生长季均值NDVI数据。同时,本数据集从数据源的质控,模型训练优化,以及模型独立验证三个方面对数据产品进行质量控制,以确保数据的精度和可靠性。本数据集的生成为中亚地区植被动态变化和空间格局的分析提供了有力的数据支持。 Central Asia is the largest arid and semi-arid region in the Northern Hemisphere,and its ecological environment is extremely fragile and susceptible to the effects of global climate change.Maintaining the stability of the region's ecosystem is crucial to global economic and social development due to its strategic geographic location.Vegetation serves as a significant indicator of the ecological environment,and its spatial and temporal distribution pattern,along with changing trends,are important indicators for assessing the ecological status of the region.The Normalized Difference Vegetation Index(NDVI)is a commonly used remote sensing index to study vegetation,which characterizes the spatio-temporal changes of vegetation.In this dataset,we used MODIS13Q1 to generate a long-term time series of mean NDVI data for the growing season with a spatial resolution of 250m in Central Asia from 2001 to 2020.To obtain the mean NDVI data for the growing season with a higher spatial resolution of 30m in 2020,we applied the Cubist algorithm based on rule segmentation regression,to fuse Landsat data and MODIS data.Meanwhile,this dataset has undergone rigorous quality control through three aspects:data source quality control,model training optimization,and model independent verification,ensuring the accuracy and reliability of the data.The dataset is expected to provide powerful data support for analyzing vegetation dynamics and spatial pattern in Central Asia.
作者 高超 任小丽 曾纳 刘畅 张心昱 张黎 何洪林 GAO Chao;REN Xiaoli;ZENG Na;LIU Chang;ZHANG Xinyu;ZHANG Li;HE Honglin(Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,P.R.China;National Ecosystem Science Data Center,Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences,Beijing 100101,P.R.China;University of Chinese Academy of Sciences,Beijing 100049,P.R.China;School of Environment and Resources,Zhejiang Agriculture and Forestry University,Hangzhou 311300,P.R.China;College of Resources and Environment,University of Chinese Academy of Sciences,Beijing 100190,P.R.China)
出处 《中国科学数据(中英文网络版)》 CSCD 2024年第3期1-11,共11页 China Scientific Data
基金 国家重点研发计划(2019YFE0126500)。
关键词 归一化植被指数 中亚 多源遥感数据融合 遥感产品 Normalized Difference Vegetation Index Central Asia multi source remote sensing data fusion remote sensing product
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部