期刊文献+

空间并置模式下的高成本户外广告选址方法

High-cost Outdoor Advertising Site Selection Method Based on Co-location Pattern
下载PDF
导出
摘要 高成本户外广告的选址有助于最大化广告投放收益。本文提出一种基于空间并置的高成本广告选址方法(CLOS),引入加权参与度(WPI)解决稀少高成本广告相关模式丢失问题,定义模式显著水平将模式挖掘结果转化为广告推荐位置。研究将CLOS方法应用于武汉市主城区,采用12类POI共计86949条数据和2类户外广告共计7875条数据,在洪山区等5个训练区中挖掘出6种高成本广告-POI关联模式(HPCP),在验证区汉阳区中生成广告推荐位置以评价方法效果。结果表明,方法在验证区6.5%的面积范围内发现了75%的高成本广告,尤其适合与经济高度相关的应用场景。 High-cost outdoor advertising site selection is helpful to maximize advertising revenue.This paper proposes a site selection method of high-cost outdoor advertising based on spatial co-location pattern,abbreviated as CLOS,which uses weighted participation index(WPI)to solve the problem of pattern loss of rare high-cost advertising,and defines the pattern significance level to transform the pattern mining results into site selection of high-cost advertising.The CLOS method was applied to the main urban area of Wuhan,using 86949 records of POI in 12 types and 7875 records of outdoor advertisements in 2 types.Six high-cost advertising and POI co-location patterns(HPCP)were excavated in five training areas such as Hongshan district,and they were used in the verification area,Hanyang district,to generate advertising recommendation location and evaluate the method performance.The results shows that the method found 75% of the high-cost advertising within 6.5%of the verification area,and is suitable for the application scenarios highly related to the economy.
作者 郝从朴 李英冰 张岩 高蕴灵 何阳 HAO Congpu;LI Yingbing;ZHANG Yan;GAO Yuning;HE Yang(School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China;State Key Laboratory of Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University,Wuhan 430079,China;China Railway First Survey and Design Institute Group Co.,Ltd.,Xi'an 710043,China)
出处 《测绘与空间地理信息》 2024年第9期57-60,64,68,共6页 Geomatics & Spatial Information Technology
基金 国家重点研发计划项目——应急大数据时空关联分析与可视化技术(2018YFC0807005)资助。
关键词 户外广告 空间数据挖掘 空间并置模式 空间关联显著指数 选址 outdoor advertising spatial data mining spatial co-location pattern spatial association significant index site selection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部