期刊文献+

武汉市日均气温对人群非意外死亡及寿命损失年影响时间序列分析

A time-series study on effect of temperature on non-accidental mortality and years of life lost in Wuhan City
原文传递
导出
摘要 目的探讨武汉市日均气温在不同滞后日对非意外死亡数及寿命损失年(years of life lost,YLL)的影响。方法收集2014—2019年武汉市居民非意外死亡数、气象数据和环保数据,采用分布滞后非线性模型(distributed lag non-linear model,DLNM)拟合逐日气温与非意外死亡数、YLL的关系,定量评估低温、高温对二者的累积滞后效应。结果武汉市日均气温对非意外死亡人数、YLL的效应曲线均呈“U”型,冷效应具有延迟性,在滞后1~2 d开始出现并持续约2周,热效应表现为急性效应,当天出现且持续约2 d。低温时,日均温度每降低1℃,人群非意外死亡数的21 d累积相对危险度(relative risk,RR)为1.29(95%CI:1.11~1.50),YLL为751.47(242.36~1260.58);高温时,日均温度每升高1℃,人群非意外死亡数的3 d累积增加11倍(RR=1.11,95%CI:1.07~1.14)、YLL为134.73(42.84~226.63);低温时,与男性死亡数及YLL(1.36、477.96)相比,女性(1.20、273.50)较低;与≥65岁人群死亡数及YLL(1.30、365.51)相比,<65岁死亡数(1.25)低、YLL(385.96)高。高温时,与男性死亡数及YLL(1.08、46.74)相比,女性(1.14、88.00)较高;与≥65岁人群死亡数及YLL(1.12、80.69)相比,<65岁(1.07、54.04)较低。结论武汉市高温和低温均可增加人群的死亡风险和YLL,其中低温影响更大。≥65岁年龄组的人群更敏感,低温对男性影响较大,高温对女性影响较大,应制定针对冷热效应特征制定防治策略,关注敏感人群,以减轻气温对人群健康的影响。 Objective To evaluate the effect of ambient temperature on non-accidental mortality and years of life lost(YLL),with different lag periods,in Wuhan City.Methods Data of non-accidental mortality,meteorological,and environmental indices were collected for the period from 2014 to 2019 in Wuhan City.Distributed lag non-linear model(DNLM)was used to assess the effect of temperature of neighboring days on non-accidental death and YLL,and the cumulative lag effects of low and high temperature on non-accidental mortality and YLL.Results A U-shaped relationship was observed for the effect of temperature on the number of non-accidental deaths and YLL.Cold effect was delayed,beginning to appear after a lag period of 1-2 d and lasting for about 2 weeks;while hot effect was acute,appearing on the same day and lasting for about 2 d.For low temperatures,the 21-day cumulative relative risk(RR)of non-accidental deaths and YLL were 1.29(95%CI:1.11-1.50)and 751.47(242.36-1260.58),respectively,for every 1℃decrease in average daily temperature.For high temperatures,the 3-day cumulative RR of non-accidental deaths and YLL were 1.11(95%CI:1.07-1.14)and 134.73(42.84-226.63),respectively,for every 1℃increase in average daily temperature.The effect of high and low temperatures on age group≥65 years(1.12,80.69;1.30,365.51)was significantly greater than that on age group<65 years(1.07,54.04;1.25,385.96).At low temperature,mortality and YLL were higher in males(1.36,477.96)than in females(1.08,46.74);whereas at high temperature,the two indicators were higher in females(1.14,88.00)than in males(1.20,273.50).Conclusions Both high temperature and low temperature could increase the risk of death and YLL in Wuhan,with low temperature imposing a greater impact.People aged≥65 years are more vulnerable.Low temperature has a greater impact on men,while high temperature a greater impact on women.Prevention and control strategies should be formulated considering the characteristics of cold and hot effects and targeting vulnerable groups,thereby
作者 赵原原 杨念念 代娟 张晓霞 金琦曼 严亚琼 ZHAO Yuanyuan;YANG Niannian;DAI Juan;ZHANG Xiaoxia;JIN Qiman;YAN Yaqiong(Wuhan Center for Disease Control&Prevention,Wuhan,Hubei 430024,China)
出处 《中国预防医学杂志》 CAS CSCD 2024年第7期893-898,共6页 Chinese Preventive Medicine
基金 武汉市卫生健康委医学科研项目(WG17Z05,WG17B05)。
关键词 气温 死亡 寿命损失年 分布滞后非线性模型 Temperature Mortality Years of life lost Distributed lag non-linear model
  • 相关文献

参考文献13

二级参考文献71

  • 1刘璋温.赤池信息量准则AIC及其意义[J].数学的实践与认识,1980,10:64-72. 被引量:5
  • 2Song X, Zhang Z, Chen Y,et al. Spatiotemporal changes of global extreme temperature events (ETEs) since 1981 and the meteorological causes [ J ]. Nat Hazards, 2014,70 ( 2 ) : 975 -994. 被引量:1
  • 3Anderson BG, Bell ML. Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States [J]. Epidemiology, 2009,20 ( 2 ) : 205 -229. 被引量:1
  • 4Ma W J, Chen RJ, Kan HD. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China [J]. Environ Res,2014,134:127-133. 被引量:1
  • 5Yang J, Ou CQ, Ding Y, et al. Daily temperature and mortality: a study of distributed lag non-linear effect and effect modification in Guangzhou [ J ]. Environ Health, 2012,11 : 63. 被引量:1
  • 6Huang CR, Barnett AG, Wang XM, et al. The impact of temperature on years of life lost in Brisbane, Australia [J]. Nature Climate Change, 2012,2 ( 4 ) : 265 -270. 被引量:1
  • 7Huang CR, Barnett AG, Wang XM, et al. Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia [J]. Cir Cardiovasc Qual Outcomes, 2012,5 (5) : 609-614. 被引量:1
  • 8World Health Organization (WHO). Life tables by country China, 2014 [DB/OL]. [2014-09-10]. http://www.apps.who.int/gho/ data/view.main60340?lang=en#. 被引量:1
  • 9Gasparrini A, Armstrong B, Kenward MG. Distributed lag non- linear models[J]. Star Med,2010,29(21 ) :2224-2234. 被引量:1
  • 10Yi W, Chan APC. Effects of temperature on mortality in Hong Kong: a time series analysis[J]. Int J Biometeorol,2014,59(7) : 927-936. 被引量:1

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部