摘要
虚拟电阻(virtual resistance,VR)方案能有效抑制虚拟同步发电机(virtual synchronous generator,VSG)并网过程中的同步振荡(synchronous resonance,SR),但会恶化系统暂态稳定性能,尤其是在高压线路中较大的线路电感将使其恶化程度进一步加剧。针对上述矛盾,首先基于功率流模型绘制功率-虚拟功角曲线,进而以最大功角过冲、总减速面积和最小初始功角定量描述VSG暂态稳定性。然后以增大最大功角过冲和总减速面积为目标,提出在电压跌落故障发生时通过减小等效有功指令和增大等效无功指令来提升系统暂态稳定性,并给出调节系数组合稳定域。最终在Matlab/Simulink平台中搭建仿真模型,结果表明,考虑VR和高压线路固有较大线路电感时,改进VSG控制策略可显著提升系统暂态稳定性能,应用良好。
The virtual resistance(VR)scheme can effectively suppress the synchronous resonance(SR)during virtual synchronous generator(VSG)grid-connection,but it will deteriorate the system transient stability performance,especially among high-voltage lines,larger line inductance will further exacerbate its deterioration.In response to the above contradictions,firstly,the power-virtual power angle curve is plotted based on power flow model,then the transient stability of VSG is described quantitatively by maximum power angle overshoot,total deceleration area and minimum initial power angle.Thereafter,with the goal of increasing the maximum power angle overshoot and total deceleration area,it is proposed to improve the transient stability of the system by reducing the equivalent active power reference and increasing the equivalent reactive power reference in the event of voltage sag fault,and a combination of adjustment coefficients in the stability domain is provided at the same time.Finally,a simulation model is built on the Matlab/Simulink platform.The results show that when the inherent large line inductance of the high-voltage lines and the VR is taken into account,the improved VSG control strategy can significantly enhance the transient stability performance of the system,and has a good application prospect.
作者
李劲松
沈琦丰
李国锋
吕敬
杨庆新
李永建
LI Jingsong;SHEN Qifeng;LI Guofeng;LÜJing;YANG Qingxin;LI Yongjian(School of Electrical Engineering,Dalian University of Technology,Dalian 116024,China;Dalian New Power System Engineering Research Center,Dalian University of Technology,Dalian 116024,China;Key Laboratory of Control of Power Transmission and Conversion,Ministry of Education,Shanghai Jiao Tong University,Shanghai 200240,China;State Key Laboratory of Reliability and Intelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2024年第8期3665-3679,共15页
High Voltage Engineering
基金
电力传输与功率变换控制教育部重点实验室(上海交通大学)开放课题(2023AA02)
省部共建电工装备可靠性与智能化国家重点实验室(河北工业大学)开放基金重点项目(EERI_KF2022002)
江苏省配电网智能技术与装备协同创新中心开放基金(XTCX202305)
四川省氢能源与多能互补微电网工程技术研究中心开放基金(2024DWNY005)。