期刊文献+

融合知识图谱和兴趣偏好的数字文化资源推荐方法

Digital Cultural Resource Recommendation Method Integrating Knowledge Graph and Interest Preferences
下载PDF
导出
摘要 在数字文化资源推荐中,资源与用户兴趣的精准匹配扮演着关键作用。虽然知识图谱有效地解决了传统推荐算法中数据稀疏性与冷启动问题,但知识图谱的静态结构却限制了对用户兴趣动态演化的理解。针对上述问题,文中提出了一种融合知识图谱和兴趣偏好的数字文化资源推荐方法(Knowledge Graph Interest Preferences,KGIP)。该方法首先通过构建知识图谱的嵌入表示用以建立用户与资源之间的关联关系。其次,采用长短期记忆网络模块表征用户的兴趣,并挖掘用户长短期历史行为中的复杂特征,更准确地捕捉用户的兴趣偏好。最后,为了充分利用兴趣偏好以及资源之间的关联信息,将两种特征表示进行融合送入多层感知器学习不同潜在因子之间的非线性结构特征,引入Sigmoid激活函数得到最终预测结果。通过在豆瓣平台和国家文化云平台数据集上进行多次实验验证,结果表明KGIP在数字文化资源推荐中具有良好的表现。 In digital cultural resource recommendation,the precise matching between resources and user interests plays a key role.Although knowledge graphs effectively address the data sparsity and cold start problems in traditional recommendation algorithms,the static structure of knowledge graphs limits the understanding of the dynamic evolution of user interests.To address these issues,we propose a digital cultural resource recommendation method that integrates knowledge graphs and interest preferences(Knowledge Graph Interest Preferences,KGIP).Firstly,this method establishes the association between users and resources by constructing embedding representations of knowledge graphs.Secondly,it utilizes a long short-term memory network module to characterize user interests and explores complex features in users'long and short-term historical behaviors to more accurately capture user interest preferences.Finally,to fully utilize interest preferences and the association information between resources,the two feature representations are merged and fed into a multi-layer perceptron to learn the nonlinear structural features among different latent factors,introducing the Sigmoid activation function to obtain the final prediction results.Through multiple experiments on the Douban platform and the National Cultural Cloud platform dataset,the results show that KGIP performs well in digital cultural resource recommendation.
作者 张大更 王西汉 高全力 ZHANG Da-geng;WANG Xi-han;GAO Quan-li(School of Computer Science,Xi’an Polytechnic University,Xi’an 710600,China)
出处 《计算机技术与发展》 2024年第9期124-130,共7页 Computer Technology and Development
基金 国家自然科学基金项目(61902300)。
关键词 推荐算法 知识图谱 长短期记忆网络 长短期兴趣偏好 数字文化资源推荐 recommendation algorithm knowledge graph long short-term memory long short-term interest preferences digital cultural resource recommendation
  • 相关文献

参考文献5

二级参考文献33

  • 1冯湘君.档案馆与图书馆知识服务的比较分析[J].图书馆工作与研究,2006(4):19-21. 被引量:20
  • 2徐拥军,冯惠玲.企业档案知识管理模式——基于双向视角的研究[J].档案学通讯,2007(5):50-53. 被引量:32
  • 3J Schafer,J Konstan,J Riedl.Recommender systems in e-commerce[C].In:Proc of ACM E-Commerce.New York:ACM Press,1999.158-166 被引量:1
  • 4Champa Jayawardana,K Priyantha Hewagamage Masashito HIrakawa.A personalize information environment for digital libraries[J].Information Technology and Libraries,2001,20(4):185-196 被引量:1
  • 5J Konstan,B Miller,D Maltz,et al.GroupLens:Applying collaborative filtering to Usenet news[J].Communications of the ACM,1997,40(3):77-87 被引量:1
  • 6高凤荣.个性化推荐系统关键技术研究:[博士论文][D].北京:中国人民大学,2003 被引量:2
  • 7Greg Linden,Brent Smith,Jeremy York.Amazon.com recommendations:Item-to-Item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80 被引量:1
  • 8G Adomavicius,A Tuzhilin.Toward the next generation of recommender systems:A survey of the state-of-the-art and possible extensions[J].IEEE Trans on Knowledge and Data Engineering,2005,17(6):734-749 被引量:1
  • 9Chun Zeng,Chun-Xiao Xing,Li-Zhu Zhou,et al.Similarity measure and instance selection for collaborative filtering international[J].Journal of Electronic Commerce,2004,4(8):115-129 被引量:1
  • 10G Karypis.Evaluation of item-based top-N recommendation algorithms[C].In:Proc of CIKM 2001.New York:ACM Press,2001.247-254 被引量:1

共引文献192

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部