期刊文献+

基于时空间联合去噪的改进差分进化算法

Improved Differential Evolution Algorithm Based on Time-Space Joint Denoising
下载PDF
导出
摘要 在工程问题的优化求解过程中,对个体的适应度评价可能会受到环境噪声的干扰,进而影响对种群进行合理的优胜劣汰操作,造成算法性能下降。为了对抗噪声环境的影响,提出了一种基于时空间联合去噪的改进差分进化算法(SEDADE)。根据适应度排名将种群划分成两个子种群,对评价较差个体组成的子种群用分布估计算法(EDA)进化,采用高斯分布建模解空间,利用解空间中多个个体噪声的随机性抵消噪声影响;对评价较好个体组成的子种群用差分进化算法(DE)进化,并且引入基于时间的停滞重采样机制去噪,提高收敛精度。对时空间混合进化得到的两个子种群进行基于概率选择的EDA信息利用操作,利用EDA搜索得到的全局信息引导DE的搜索方向,避免陷入局部最优。在实验中使用了被零均值高斯噪声干扰的基准函数,可以发现SEDADE相比其他算法更具有竞争性,此外通过消融实验验证了所提算法包含的3个机制的有效性和合理性。 In the optimization process of solving engineering problems,the evaluation of individual fitness may be affected by environmental noise,so as to affect the reasonable survival of the fittest operation on the population,and result in a decline in algorithm performance.In order to combat the impact of noise environment,an improved differential evolution algorithm(SEDADE)based on joint temporal and spatial denoising is proposed.The population is divided into two subpopulations according to fitness ranking,and the subpopulations composed of poorly evaluated individuals are evolved using a distribution estimation algorithm(EDA).Gaussian distribution is used to model the solution space,using the randomness of multiple individual noises in the solution space to offset the noise impact.Differential evolution algorithm(DE)is used to evolve subpopulations with better evaluated individual composition,and a time-based stagnation resampling mechanism is introduced to denoise to improve convergence accuracy.The EDA information utilization operation based on probability selection is performed on the two subpopulations derived from time-space mixed evolution,and the global information obtained from EDA search is used to guide the search direction of DE to avoid falling into local optimization.In the experiment,a benchmark function interfered by zero mean Gaussian noise is used,and it is found that SEDADE is competitive with other algorithms.In addition,the effectiveness and rationality of the proposed mechanism are verified through ablation experiments.
作者 王彬 张鑫雨 金海燕 WANG Bin;ZHANG Xinyu;JIN Haiyan(School of Computer Science and Engineering,Xi’an University of Technology,Xi’an 710048,China;Shaanxi Key Laboratory for Network Computing and Security Technology,Xi’an University of Technology,Xi’an 710048,China)
出处 《计算机科学》 CSCD 北大核心 2024年第9期299-309,共11页 Computer Science
基金 国家自然科学基金(62272383,62372369)。
关键词 差分进化 分布估计 噪声 重采样 混合进化 信息利用 Differential evolution Distribution estimation Noise Resampling Hybrid evolution Information utilization
  • 相关文献

参考文献2

二级参考文献14

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部