期刊文献+

基于改进AdvSemiSeg的半监督遥感影像作物制图方法 被引量:1

Semi-supervised Network for Remote Sensing Crop Mapping Based on Improved AdvSemiSeg
下载PDF
导出
摘要 作物精准遥感制图对于农业资源调查与管理具有重要意义。深度学习为实现精准高效作物制图提供了技术支持。为了缓解深度学习对标记样本的依赖,本文提出了一种改进AdvSemiSeg的半监督遥感影像作物制图方法。所提方法引入STMF-DeepLabv3+作为对抗学习中的生成网络,通过Swin Transformer(ST)和多尺度特征融合(Multi-scale fusion, MF)模块提高生成网络特征编码能力和语义表达能力,改善遥感影像作物分割效果;此外,在判别网络中引入通道注意力(Efficient channel attention, ECA)模块,对不同通道特征图的表征信息进行自适应学习,增强判别网络对不同通道特征的感知能力。模型训练过程中,判别网络为生成网络提供高质量的伪标签和对抗损失,有效提高生成网络的泛化能力。采用所提方法与几种先进的半监督语义分割方法对内蒙古河套灌区遥感影像种植信息进行提取,本文方法性能最优。 Crop precision remote sensing mapping holds significant importance for agricultural resource surveys and management.Deep learning provides technical support for achieving accurate and efficient crop mapping.To alleviate the dependency of deep learning on labeled samples,an improved semi-supervised remote sensing crop mapping method was proposed based on AdvSemiSeg.The proposed method introduced STMF-DeepLabv3+as the generator in the adversarial learning framework,enhancing the feature encoding and semantic expression capabilities of the generator through Swin Transformer(ST)and multi-scale fusion(MF)modules,thus improving the segmentation performance of remote sensing crop images.Additionally,the efficient channel attention(ECA)module was introduced after each convolutional layer of the discriminator to adaptively learn the representation information of different channel feature maps,enhancing the discriminator's perception of different channel features.During the training process,the discriminator provided high-quality pseudo-labels and adversarial losses to the generator,effectively improving the generalization ability of the generator.Compared with several advanced semi-supervised semantic segmentation methods,the proposed method achieved optimal performance in extracting planting information from remote sensing images in the Hetao Irrigation District of Inner Mongolia.
作者 翟雪东 韩文霆 马伟童 崔欣 李广 黄沈锦 ZHAI Xuedong;HAN Wenting;MA Weitong;CUI Xini;LI Guang;HUANG Shenjin(College of Mechanical and Electronic Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China;Institute of Water-saving Agriculture in Arid Areas of China,Northwest A&F University,Yangling,Shaanxi 712100,China;College of Water Resources and Architectural Engineering,Northwest A&F University,Yangling,Shaanxi 712100,China;Chongqing Institute of Green and Intelligent Technology,Chinese Academy of Sciences,Chongqing 400714,China;Faculty of Computing,Harbin Institute of Technology,Harbin 150001,China)
出处 《农业机械学报》 EI CAS CSCD 北大核心 2024年第8期196-204,共9页 Transactions of the Chinese Society for Agricultural Machinery
基金 国家重点研发计划项目(2022YFD1900802) 国家自然科学基金项目(51979233) 中央高校基本科研业务费专项资金项目(2452023078)。
关键词 遥感 作物制图 半监督学习 生成对抗网络 多尺度特征融合 通道注意力 remote sensing crop mapping semi-supervised learning generative adversarial network multi-scale features fusion channel attention
  • 相关文献

参考文献8

二级参考文献148

共引文献149

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部