摘要
大型语言模型的崛起是深度学习领域的全新里程碑,而微调技术在优化模型性能方面的起到了关键作用。对大型语言模型微调技术进行了全面的综述,回顾了语言模型的统计语言模型、神经网络语言模型、预训练语言模型和大语言模型四个阶段的发展历程和微调技术的基本概念,从经典参数微调、高效参数微调、提示微调和强化学习微调方法四大部分,探讨总结了各微调技术的原理与发展,并进行了一定的对比分析。最后,总结了当前微调技术的研究状况与发展重点,强调了该领域的潜在研究价值,并展望了未来的发展方向。
The rise of large-scale language models signifies a new milestone in the field of deep learning,with fine-tuning techniques playing a crucial role in optimizing model performance.This paper provides a comprehensive overview of fine tuning techniques for large-scale language models.It reviews the development stages of language models,including statis-tical language models,neural network language models,pre-trained language models,and large language models.The basic concepts of fine-tuning are explored,covering classic fine-tuning,efficient parameter fine-tuning,prompt tuning,and reinforcement learning fine-tuning.The paper delves into the principles and development of each fine-tuning tech-nique,offering a comparative analysis across these four major categories.In conclusion,the paper summarizes the current state of research on fine-tuning techniques and underscores the potential research value in this domain,providing insights into future directions of development.
作者
张钦彤
王昱超
王鹤羲
王俊鑫
陈海
ZHANG Qintong;WANG Yuchao;WANG Hexi;WANG Junxin;CHEN Hai(School of Arts and Sciences,Beijing Normal University at Zhuhai,Zhuhai,Guangdong 519087,China)
出处
《计算机工程与应用》
CSCD
北大核心
2024年第17期17-33,共17页
Computer Engineering and Applications
基金
广东省教育科学规划课题(2022GXJK47)
认知智能全国重点实验室智能教育开放课题(iED2023-005)。
关键词
大语言模型
微调方法
预训练模型
自然语言处理
large language model
fine-tuning methods
pre-trained models
natural language processing