摘要
当锂电池处于极端放电或热失控环境时,会产生CO、CH_(4)等热失控气体,研究更优良的气体传感器对检测热失控气体浓度、监测锂电池运行状态具有重要的现实意义。采用第一性原理计算,比较和分析了单层CdS和铂(Pt)掺杂单层CdS结构特征、差分电荷密度、态密度、吸附特性、解吸时间和前沿轨道理论计算。掺杂后两种气体的吸附能分别为-2.52 eV和-0.27 eV。单层CdS对两种气体的吸附类型为物理吸附,掺杂后CO吸附类型转变为化学吸附,分波态密度表明CO气体分子与掺杂的Pt原子发生轨道杂化现象,表现出Pt掺杂单层CdS对CO的吸附选择性。Pt-CdS在三种拟定温度下解脱CO的时间均超过10^(14) s,说明Pt-CdS具有作为CO气体吸附材料的潜力。实验结果表明铂掺杂有效提升了单层CdS对锂电池气体的选择性吸附能力。
When lithium batteries are in extreme discharge or thermal runaway condition,thermal runaway gases such as CO and CH_(4)are produced.The superior gas sensors is of great practical significance for detecting the concentration of thermal runaway gases and monitoring the operating status of lithium batteries.Using first-principles calculations,the structural characteristics,differential charge density,density of states,adsorption properties,desorption time,and frontier orbital theory calculations of monolayer CdS and Pt-doped monolayer CdS were compared and analyzed.The adsorption energies of the two gases after doping are-2.52 eV and-0.27 eV,respectively.Monolayer CdS exhibits physical adsorption for both gases,while after doping,the adsorption type for CO turns to chemical adsorption.The partial density of states analysis indicates the orbital hybridization between CO gas molecules and doped platinum atoms,demonstrating the adsorption selectivity of Pt-doped monolayer CdS for CO.Pt-CdS desorbs CO for over 10^(14) seconds at three specified temperatures,indicating the potential of Pt-CdS as a material for adsorbing CO gas.The experimental results show that the selective adsorption capacity of monolayer CdS for gases produced by lithium batteries can be effectively enhanced by platinum doping.
作者
柳逢春
李子锐
陈飞宇
张振宇
张泽
周渠
LIU Fengchun;LI Zirui;CHEN Feiyu;ZHANG Zhenyu;ZHANG Ze;ZHOU Qu(Shanxi Electric Power Research Institute,State Grid Shanxi Electric Power Company,Taiyuan030001,China;State Grid Shanxi Electric Power Company,Taiyuan030021,China;Department of Electrical Engineering,College of Engineering and Technology,Southwest University,Chongqing400715,China)
出处
《电子元件与材料》
CAS
北大核心
2024年第7期779-786,共8页
Electronic Components And Materials
基金
国网山西省电力公司科技项目(52053023000K)。