期刊文献+

基于深度学习牙体分割算法的准确性研究

Accuracy of tooth segmentation algorithm based on deep learning
下载PDF
导出
摘要 目的:应用建立的全自动AI牙体分割算法,从CBCT影像中实现牙体的快速自动化分割,以口内扫描真实离体牙获得的三维数据作为金标准,验证算法的准确性。方法:从上海交通大学医学院附属第九人民医院收集30套CBCT数据及相应的59颗离体牙,通过建立的算法,分割出CBCT中的牙体三维数据。将离体牙处理后扫描获得的数字化信息作为金标准。为了比较算法分割结果以及扫描结果之间的差异,选取骰子系数(Dice)、灵敏度(sensitivity,Sen)以及平均表面距离(average symmetric surface distance,ASSD)评价算法的分割准确性。选用组内相关系数(ICC)评价AI系统获得单个牙与数字化离体牙的长度、面积和体积差异。由于存在不同体素大小的CBCT,使用ANOVA单因素方差分析不同体素组间的差异,同时通过SNK法对其进行两两比较。采用SPSS 25.0软件包对数据进行统计学分析。结果:算法分割结果与离体牙扫描结果对比后,得到平均Dice值为(94.7±1.88)%,平均Sen为(95.8±2.02)%,平均ASSD为(0.49±0.12)mm。比较数字化离体牙与AI系统获得的单个牙的长度、面积和体积的组内相关系数ICC值,分别为0.734、0.719和0.885,AI系统分割出的单个牙与数字化模型在评价长度、面积和体积时有着较好的一致性,但分割结果在具体数值上与真实情况仍有差异。CBCT体素越小,即分辨率越高,分割结果表现更好。结论:本研究建立的CBCT牙体分割算法能够准确实现各分辨率下CBCT中全牙列的牙体分割。CBCT分辨率提高,能让算法结果更准确。相比目前的分割算法,本研究的算法性能更好。但与实际情况相比,仍有一定差异,需对算法继续改进及验证。 PURPOSE:The established automatic AI tooth segmentation algorithm was used to achieve rapid and automatic tooth segmentation from CBCT images.The three-dimensional data obtained by oral scanning of real isolated teeth were used as the gold standard to verify the accuracy of the algorithm.METHODS:Thirty sets of CBCT data and corresponding 59 isolated teeth were collected from Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine.The three-dimensional tooth data in CBCT images were segmented by the algorithm.The digital information obtained by scanning the extracted teeth after processing was used as the gold standard.In order to compare the difference between the segmentation results and the scanning results of the algorithm.The Dice coefficient(Dice),sensitivity(Sen)and average symmetric surface distance(ASSD)were selected to evaluate the segmentation accuracy of the algorithm.The intra-class correlation coefficient(ICC)was used to evaluate the differences in length,area,and volume between the single tooth obtained by the AI system and the digital isolated tooth.Due to the existence of CBCT with different resolution,ANOVA was used to analyze the differences between groups with different resolution,and SNK method was used to compare them between two groups.SPSS 25.0 software package was used to analyze the data.RESULTS:After comparing the segmentation results with the in vitro dental scanning results,the average Dice value was(94.7±1.88)%,the average Sen was(95.8±2.02)%,and the average ASSD was(0.49±0.12)mm.By comparing the length,area and volume of a single tooth obtained by the digital isolated tooth and the AI system,the ICC values of the intra-group correlation coefficients were 0.734,0.719 and 0.885,respectively.The single tooth divided by the AI system has a good consistency with the digital model in evaluating the length,area and volume,but the segmentation results were still different from the real situation in terms of specific values.The smaller the voxel of CBCT,the higher
作者 张博钧 崔智铭 柳稚旭 陈思悦 顾恺隽 李思彤 吴艳棋 沈定刚 朱敏 ZHANG Bo-jun;CUI Zhi-ming;LIU Zhi-xu;CHEN Si-yue;GU Kai-jun;LI Si-tong;WU Yan-qi;SHEN Ding-gang;ZHU Min(Department of Oral and Craniomaxillofacial Surgery,Shanghai Ninth People's Hospital,Shanghai Jiao Tong University School of Medicine/College of Stomatology,Shanghai Jiao Tong University/National Center for Stomatology/National Clinical Research Center for Oral Diseases/Shanghai Key Laboratory of Stomatology/Shanghai Research Institute of Stomatology,Shanghai 200011;School of Biomedical Engineering,Shanghai Tech University,Shanghai 201210,China)
出处 《上海口腔医学》 CAS 2024年第4期339-344,共6页 Shanghai Journal of Stomatology
基金 国家自然科学基金(82001027) 科技部-科技基础资源调查专项课题(2018FY101001) 中国牙病防治基金会(A2021-145) 上海交通大学医学院附属第九人民医院临床研究助推计划(JYLJ202017)。
关键词 人工智能 CBCT 牙体分割 准确性 Artificial intelligence Cone-beam CT Tooth Segmentation Accuracy
  • 相关文献

参考文献4

二级参考文献47

  • 1柳先锋,刘翔宇,何亚男,尹文娟,靳富.Varian On-Board Imager(OBI)常规测量方法及质量保证[J].中国医学物理学杂志,2011,28(1):2344-2347. 被引量:7
  • 2张飞,樊瑜波,蒲放,刘展.牙颌CT图像序列中牙的半自动分割方法[J].生物医学工程学杂志,2007,24(1):15-18. 被引量:6
  • 3王蕾,段银钟,王艳清,宁芳.根尖定位片定量观测推磨牙远移后牙根吸收[J].实用口腔医学杂志,2007,23(2):260-263. 被引量:6
  • 4王悦.正畸力使牙齿压低对牙根吸收的评估[J].国外医学:口腔医学分册,1997,(6):377-378. 被引量:2
  • 5傅民魁.口腔正畸学[M].第6版.北京:人民卫生出版社,2013:227-228. 被引量:4
  • 6Domon S, Shimokawa I4, Matsumoto ~, et al. In situhy -bridization formatrix metallop roteinase 21 and cathep sinkin rat root 2 resorb- ing tissue induced by tooth movement [J]. Arch OralBiol, 1999.44 (11) :907-915. 被引量:1
  • 7Ramos Sde P, Ortholan GO, Dos Santos LM,et al. Anti-dentine an- tibodies with root resorption during orthodontic treatment [J]. Eur J Orthod, 2011,33 (5) : 584-591. 被引量:1
  • 8Asano M,Yamaguchi M,Nakajima R,et al. IL-8 and MCP-I in- duced by excessive orthodontic force mediates odontoclastogenesis in periodontal tissues[J]. Oral Diseases, 2011, 17 (5) : 489-498. 被引量:1
  • 9Fuss Z,Tsesis I,Lin S. Root resorption-dignosis,classification and treatment choices based on stimulation factors [J]. Dent Traumatol, 2003, 19(4) : 175-182. 被引量:1
  • 10Blomlaf L, Lindskog S. Cervical mot resorption associated with guid- ed tissue regemeration: A case report [J]. J Periodotol, 1998, 69 (3): 392-395. 被引量:1

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部