摘要
光线追迹用于建立传感器像素和火焰的映射关系,是火焰光场成像的重要步骤,服务于温度场重建。但目前常用的蒙特卡洛逆向追迹在承载辐射量计算上,存在精度不稳定、耗时长等问题。本文提出在光线传播方程加入透镜参数,测算投影光斑与透镜的交互关系,表征承载辐射量的积分。该积分追迹方法旨在简化传输模型、确保高精度的辐射量计算。为验证其有效性,使用不同光线密度的逆向追迹与本文方法对温度场采样,生成对应火焰光场图像,将不同采样样本训练的模型在标准数据集下作对比:随采样光线密度提升,重建温度场误差越低,当光线密度达50×50条/像素时,重建平均相对误差为0.275%,追迹过程耗时405.53 s;本文方法重建平均相对误差为0.246%,追迹过程耗时0.3 s。
Ray tracing is used to establish the physical mapping of sensor pixels and flames,which is an important step in flame light field imaging and the basis for temperature field reconstruction.However,the commonly used Monte Carlo reverse ray-trace has problems of unstable accuracy and time-consuming computation in the calculation of pixel-carrying radiance.In this paper,we propose to add lens parameters to the light propagation equation and calculate the intersection area of the projected spot and the lens for characterizing the integration of the pixel-carrying radiance.This integral tracing method aims to simplify the transmission model and ensure high accuracy in the calculation of pixel-carrying radiance.In order to verify its effectiveness,the reverse ray-trace with different light densities and proposed method are used to sample the same temperature field and generate the corresponding flame light field image,and the models trained with different sampling samples are compared under the standard data set:the error of reconstructing the temperature field is lower as the sampled light density increases,and the average relative error of reconstruction is 0.275%when the light density reaches 50×50 bars/pixel,and the tracing process takes 405.53 s.The mean relative error of reconstruction is 0.275%and the tracing process takes 405.53 s;the mean relative error of the reconstruction of the method in this paper is 0.246%,and the tracing process takes 0.3 s.
作者
单良
华夏杰
孔明
牛玉风
赵腾飞
SHAN Liang;HUA Xiajie;KONG Ming;NIU Yufeng;ZHAO Tengfei(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College of Information Engineering,China Jiliang University,Hangzhou 310018,China;College of Metrology&Measurement Engineering,China Jiliang University,Hangzhou 310018,China)
出处
《工程热物理学报》
EI
CAS
CSCD
北大核心
2024年第8期2423-2431,共9页
Journal of Engineering Thermophysics
基金
国家自然科学基金资助项目(No.51874264/52076200)。
关键词
光线积分追迹
承载辐射
光场相机
火焰测温
integral ray tracing
carrying radiation
light field camera
flame temperature measurement