摘要
窄带雷达因其成本低、作用距离远的优点在防空制导领域有着广泛应用,随着高速机动平台的发展,传统的基于长时间观测回波序列特征建模的目标识别方法已不再适用。针对窄带雷达对短时间观测回波(OEST)序列特征识别能力较差,并且易受诱饵目标干扰,导致识别结果可靠性不高的问题,该文提出一种采用多特征自适应融合的窄带雷达OEST序列空中目标识别方法。首先,对编码层和分类层进行训练,通过构建通道-空间注意力模块,自适应地突出高可分性特征,然后,构建最大边缘正交损失函数,增大不同类别特征间距,缩小同类特征间距,并使类间特征正交,以此提升分类性能;最后,固定编码层与分类层参数,利用重构误差对解码层进行训练,确保模型具备对诱饵等库外目标的准确鉴别能力。实验部分在观测序列长度为100的条件下,分类准确率和鉴别率分别达到94.37%和96.78%,由此可得,所提方法能够有效提升窄带雷达的分类性能和对诱饵目标的鉴别能力,进而提高识别结果的可靠性。
Narrowband radar is widely used in the field of air defense guidance due to its advantages of low cost and long operating range.With the development of high-speed mobile platforms,traditional target recognition methods based on feature modeling of long-term observation echo sequences are no longer applicable.In response to the problem of poor feature recognition ability of narrowband radar for Observe Echoes for a Short period of Time(OEST)sequences and susceptibility to bait target interference,resulting in low reliability of recognition results,a narrowband radar OEST sequence air target recognition method using multi feature adaptive fusion is proposed in this paper.Firstly,the encoder and classification layers are constructed with channel-spatial attention modules and trained to adaptively enhance features with high separability.Then,the maximum edge orthogonal loss function is proposed to increase the feature spacing between different classes,reduce the feature spacing between the same classes,and make the feature vectors orthogonal between different classes;Finally,the parameters of the encoder layer and classification layer are fixed,and the decoder layer is trained using reconstruction loss value to ensure that the model has accurate identification ability for decoy targets.Under the condition of an observation sequence length of 100,the classification accuracy and discrimination rate of the experimental part reached 94.37%and 96.78%,respectively.It can be concluded that the proposed method can effectively improve the classification performance of narrowband radar and the discrimination ability against bait targets,thereby improving the reliability of recognition results.
作者
郭泽坤
刘峥
谢荣
冉磊
徐寒铮
GUO Zekun;LIU Zheng;XIE Rong;RAN Lei;XU Hanzheng(National Key Laboratory of Radar Signal Processing,Xidian University,Xi’an 710071,China)
出处
《电子与信息学报》
EI
CAS
CSCD
北大核心
2024年第8期3184-3192,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(62001346)
雷达信号处理全国重点实验室支持计划项目(KGJ202205)。
关键词
窄带雷达
高速机动平台
空中目标识别
短时间观测回波
特征融合
Narrowband radar
High-speed mobile platform
Aerial target recognition
Observe Echoes for a Short period of Time(OEST)
Feature fusion