期刊文献+

基于车载激光扫描点云数据的杆状地物提取方法研究

Research on Pole Shaped Feature Extraction Method Based on Vehicle Laser Scanning Point Cloud Data
下载PDF
导出
摘要 杆状物作为道路场景中重要的公共设施,研究如何对其进行自动化精确分类十分重要。本文基于车载激光扫描点云数据,提出一种基于聚类的杆状物自动提取方法。主要实现步骤为:首先,对原始道路车载激光点云数据进行水平面投影并构建格网,以格网为单位进行地物点提取;其次,基于格网对地物点进行聚类;最后,以聚类结果的单个点云块为处理单元,根据地物的空间表达特征实现杆状物的精细提取与分类。为了对本文提出杆状物方法的有效性进行检验,使用实测道路点云数据进行实验,并将杆状物提取结果与人工提取结果进行对比,结果表明,灯杆与行道树均取得较高的探测率,证明了算法的正确性与优越性。 As an important public facility in road scenes,it is particularly important to study how to automatically and accurately classify pole shaped objects.This article proposes a clustering based automatic extraction method for pole shaped objects based on vehicle-borne laser scanning point cloud data.The main implementation steps are as follows:first,it projects the original road vehicle-borne laser point cloud data horizontally and constructs a grid,and extracts ground points on a grid basis;secondly,it conducts clustering of ground points based on grid;finally,it uses a single point cloud block from the clustering results as the processing unit,fine extraction and classification of pole shaped objects are achieved based on the spatial expression characteristics of the features.In order to verify the effectiveness of the proposed pole shaped object method in this article,experimental results were conducted using measured road point cloud data,and the results of pole shaped object extraction were compared with those of manual extraction.The results showed that both lamp poles and roadside trees achieved high detection rates,proving the correctness and superiority of the algorithm.
作者 黄梦霞 HUANG Mengxia(Zhejiang Institute of Surveying and Mapping Science and Technology,Hangzhou 310000,China)
出处 《测绘与空间地理信息》 2024年第8期165-167,共3页 Geomatics & Spatial Information Technology
关键词 车载激光扫描 杆状物 提取 格网划分 聚类 vehicle-borne laser scanning pole shaped objects extraction grid division clustering
  • 相关文献

参考文献18

  • 1石蒙蒙..融合VGI和车载LiDAR点云的建筑物三维快速提取[D].武汉大学,2018:
  • 2安瑶军..车载激光点云数据结构化道路及标线提取[D].长安大学,2019:
  • 3南红涛..车载激光点云道路提取技术研究与应用[D].战略支援部队信息工程大学,2020:
  • 4刘华.车载激光点云地物提取与分类研究[J].测绘学报,2020,49(11):1506-1506. 被引量:21
  • 5李赞..基于车载激光点云的杆状交通设施提取与分类研究[D].武汉大学,2018:
  • 6韩婷..OpenStreetMap辅助的车载激光点云道路几何特征提取[D].武汉大学,2018:
  • 7张西童,刘会云,李永强,黄腾达,李有鹏.车载LiDAR场景中路灯的提取与识别[J].测绘工程,2016,25(9):50-54. 被引量:8
  • 8李永强,董亚涵,张西童,李鹏鹏.车载LiDAR点云路灯提取方法[J].测绘学报,2018,47(2):247-259. 被引量:20
  • 9蔡尚书..车载激光点云地面滤波与道路识别方法研究[D].山东科技大学,2017:
  • 10李游..基于车载激光扫描数据的城市街道信息提取技术研究[D].武汉大学,2017:

二级参考文献37

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部