期刊文献+

基于PCA-BP神经网络的TOC测井评价方法研究

Research on TOC Log Evaluation Method Based on PCA-BP Neural Network
下载PDF
导出
摘要 有机碳含量是评价烃源岩潜力的主要参数,常用的总有机碳含量(TOC)测井反演模型难以深度剖析测井曲线之间的复杂共线性关系,制约了多维测井信息的综合评价效果。利用玛湖凹陷三叠系白碱滩组泥岩的热解实验结果和常规测井曲线资料,建立了一种基于PCA-BP(Principal Component Analysis and Back Propagation)神经网络的有机碳含量智能预测方法。该方法以敏感测井曲线的加权平均值和TOC测试结果为原始数据集,首先利用方差膨胀因子检测测井曲线之间共线性,然后采用主成分分析PCA(Principal Component Analysis)技术对原始数据集进行去共线性和降维处理,确定出2个主成分,最后结合中子、自然伽马、密度、声波时差曲线值,建立出6个输入节点的3层BP(Back Propagation)神经网络预测模型,对研究区三叠系白碱滩组烃源岩潜力进行精细评价。3口取心井累积410m井段的预测结果表明,模型的决定系数高达0.879,预测结果平均绝对误差和均方误差分别为0.220和0.107,平均相对误差为16.1%。研究结果为准噶尔盆地勘探领域优选提供了可靠参考。 The organic carbon content is the main parameter to evaluate the potential of hydrocarbon source rocks.The commonly used TOC logging inversion model is difficult to deeply analyze the complex collinearity relationship between logging curves,which restricts the comprehensive evaluation effect of multi-dimensional logging information.An intelligent prediction method of organic carbon content based on principal component analysis and back propagation(PCA-BP)neural network is established,based on the pyrolysis experimental results and conventional logging curves of Triassic Baijiantan formation mudstone in Mahu sag.The method is based on the weighted average of sensitive logging curves and TOC test results as the original data set.Firstly,the variance inflation factor is used to detect the collinearity between the logging curves.Then,the principal component analysis(PCA)technology is used to decollinearity and reduce the dimension of the original data set,and two principal components are determined.Finally,combined with neutron,gamma ray,density and acoustic logging curve values,a three-layer back propagation(BP)neural network prediction model with six input nodes is established to evaluate the source rock potential of the Triassic Baijiantan formation in the study area.The prediction results of the cumulative 410 m section of three coring wells show that the determination coefficient of the model is as high as 0.879,the average absolute error and mean square error of the prediction results are 0.220 and 0.107,respectively,and the mean relative deviation is 16.1%. The research results provide a reliable reference for the optimization of exploration domain in Junggar basin.
作者 尚亚洲 许多年 张兆辉 刘建宇 赵雯雯 SHANG Yazhou;XU Duonian;ZHANG Zhaohui;LIU Jianyu;ZHAO Wenwen(School of Geology and Mining Engineering,Xinjiang University,Urumqi,Xinjiang 830047,China;Northwest Branch,Research Institute of Petroleum Exploration and Development,PetroChina,Lanzhou,Gansu 730020,China)
出处 《测井技术》 CAS 2024年第4期438-452,共15页 Well Logging Technology
基金 新疆维吾尔自治区“天池英才”计划“基于沉积-成岩补偿评价的致密砂岩储层甜点预测”(51052300560) 甘肃省油气资源研究重点实验室开放基金“致密砂岩全尺度岩石相数字建模及其地震响应分析”(SZDKFJJ2023007) 新疆大学博士“启动基金”项目“基于沉积构造相表征识别的页岩有效储层评价预测方法”(620322016)。
关键词 PCA-BP神经网络 有机碳含量 测井评价 降维 去共线性 PCA-BP neural network organic carbon content log evaluation reduction dimension decollinearity
  • 相关文献

参考文献49

二级参考文献833

共引文献309

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部