摘要
托卡马克等离子体破裂会产生逃逸电流,如不进行抑制,其携带的巨大能量将对设备造成严重破坏。本文使用DREAM程序中的流体模型,基于中国环流器二号M(HL-2M)托卡马克装置大等离子体电流放电条件,研究注入氘氩/氖混合气体对破裂逃逸电流的影响。研究表明:注入氘氩/氖混合气体可以抑制最终形成的平台逃逸电流。在讨论的破裂前等离子体电流I_(p)范围内,最优条件下氩/氖在混合气体中的含量应在0.50%~0.70%,氘的注入量应在10^(20)~10^(21)m^(-3)。在这个范围外,氘氩/氖混合气体注入对逃逸电流的抑制效果都会减弱,甚至会增大逃逸电流。破裂前等离子体电流I_(p)是影响逃逸电流的关键因素。I_(p)越大,形成的逃逸电流越大,也需要注入更多的混合气体。在I_(p)高达10 MA的聚变堆级托卡马克装置上,注入混合气体的密度需要达到10^(22)m^(-3),这是目前大量气体注入(Massive Gas Injection,MGI)技术所不能达到的,通过散裂弹丸注入氘氩/氖混合物将是更加可行的方式。
[Background]Tokamak plasma disruption generates a runaway current carrying enormous amounts of energy that,if not suppressed,can cause severe damage to equipment.[Purpose]This study aims to investigate the effects of injecting a deuterium-argon/neon gas mixture on a runaway current during plasma disruption.[Methods]Based on the high plasma current discharge conditions of the HL-2M tokamak device in China,numerical simulations were conducted using a fluid model in the DREAM code.Variations of plasma parameters,such as plasma current(I_(p)),ohmic current(Iohm),runaway current and the ohmic electric field,with the injected deuteriumargon content and ratio during the disruption process were consistently simulated.[Results]Results show that injecting a deuterium-argon/neon gas mixture suppresses the eventual formation of a platform runaway current,and an optimal content and ratio of the deuterium-argon/neon gas mixture are existed for effective runaway current suppression.Within the range of the pre-disruption plasma current(I_(p))discussed in this study,the amounts of neon/argon and deuterium in the gas mixture should be 0.50%~0.70%and 10^(20~10^(21)m^(−3),On fusion-reactor-scale tokamak devices with I_(p)as high as 10 MA,the amount of the injected gas mixture must reach 1022 m^(−3),which cannot be achieved under the current massive gas injection(MGI)technique.[Conclusions]The pre-disruption plasma current(I_(p))is the key factor that influences a runaway current.The larger I_(p)is,the larger is the runaway current that is formed and more amount of the gas mixture must be injected.On fusion-reactor-scale tokamak devices with I_(p)as high as 10 MA,the amount of the injected gas mixture must reach 1022 m^(−3),which cannot be achieved under the current massive gas injection technique.Injecting a deuterium-argon/neon gas mixture through a shattered pellet would be a more viable approach.
作者
韩真哲
郑平卫
HAN Zhenzhe;ZHENG Pingwei(School of Resource Environment and Safety Engineering,University of South China,Hengyang 421001,China;Demonstration Base for International Science and Technology Cooperation on Nuclear Energy and Nuclear Safety,University of South China,Hengyang 421001,China)
出处
《核技术》
EI
CAS
CSCD
北大核心
2024年第8期98-106,共9页
Nuclear Techniques
基金
国家重点研发计划(No.2022YFE03070000,No.2022YFE03070003)
国家自然科学基金(No.12375220)
湖南省自然科学基金(No.2021JJ30569)
南华大学博士启动基金项目(No.190XQD114)
湖南省核聚变国际科技创新合作基地(No.2018WK4009)
衡阳市磁约束核聚变研究重点实验室(No.2018KJ108)资助。