期刊文献+

基于主轴电流信号的刀具异常监控研究

Research on Tool Anomaly Monitoring Based on Spindle Current Signal
下载PDF
导出
摘要 切削加工中刀具出现磨损或崩刀是影响工件加工精度、表面粗糙度和机床运行效率的关键因素,因此刀具加工时状态的在线监测具有重要意义。为了监测加工中心加工过程中刀具异常情况,提高工件的加工质量、机床运行效率和刀具的使用寿命,搭建了基于电流传感器采集电流信号的刀具异常监控系统,通过开展切削加工实验,分析了加工时主轴电流信号的时域和频域特性,获得各信号的关联关系,实现通过监测主轴电流信号间接监测刀具加工状态。结果表明,本系统具有较高的识别精度和可靠性,为实际加工过程中刀具异常状态的监测以及后续工艺优化提供了参考。 In CNC machining center machining,tool wear or tool collapse is a key factor affecting workpiece machining accuracy,surface roughness and machine tool operating efficiency,so the online monitoring of the state of the tool processing has very important significance,in order to monitor the abnormal situation of the tool in the machining center processing,to improve the machining quality and extend the service life of the tool,a tool anomaly monitoring system is built based on current sensor to collect current signals.By carrying out machining experiments,the time domain and frequency domain characteristics of spindle current signals during machining are analyzed,and the correlation between each signal is obtained,the indirect monitoring of dynamic cutting tool state during machining is realized by monitoring spindle current signals.The system has high recognition accuracy and reliability,and provides reference for the monitoring of tool abnormal state in the actual machining process and the subsequent process optimization.
作者 张瑞强 於双月 蒙旭喜 Zhang Ruiqiang;Yu Shuangyue;Meng Xuxi
出处 《工具技术》 北大核心 2024年第8期156-160,共5页 Tool Engineering
关键词 在线监控 时域与频域 动态切削 online monitoring time domain and frequency domain dynamic cutting
  • 相关文献

参考文献7

二级参考文献26

  • 1翁德玮,邵华,王海丽.多传感器刀具状态监控系统[J].机械制造,2004,42(6):11-14. 被引量:6
  • 2王海丽,马春翔,邵华,胡德金.车削过程中刀具磨损和破损状态的自动识别[J].上海交通大学学报,2006,40(12):2057-2062. 被引量:21
  • 3Tonshoff. H. K. Developments and Trends in Monitoring and Control of Machining Process[ J ]. Annals of the CIRP, 1988,37 ( 2 ) : 103 - 109. 被引量:1
  • 4Tlurty. J. A Critical Review of Sensors for Unmanned Machining[ J]. Annals of the CIRP, 1983,32 (2) : 107-108. 被引量:1
  • 5Ed. Seharp,Tool Monitoring Keeps on Eye on Automated Turning [ J ]. American Machinist, 1993,137 ( 10 ) : 1073-1098. 被引量:1
  • 6Wang L, Mehrabi M G, Kannatey E J R,et al. Hidden Markov Model -based Tool Wear Monitoring in Turning [ J 1. J Manuf Sei Eng, 2002,124 ( 3 ) :651-658. 被引量:1
  • 7Sun J, Hong G S, Rahnmn M, et al. htentification of Feature Set fi~r Effective Tool Condition Monitoring By Acoustic Emission Sensing. lnt J Prnd Res,2004,42(5 ) :901-918. 被引量:1
  • 8Y. -C. Chang, K. -T. 1.ee, H. -y. Chuang. Cutting force estimation of Spindle Motor [ J ]. Journal of Control Systems Technology, 1995,3 (2) :145-152. 被引量:1
  • 9Bukkapatnam S T S, Kumara S R T,Lakatakiaa. Fractal Estimation of Flank Wear in Turning[ J]. ASME J Dyn Syst Meas Cont,2000, 122 : 89-94. 被引量:1
  • 10刘清荣,阎长罡.基于铣削力与神经网络刀具磨损状态识别研究[J].制造技术与机床,2008(2):72-76. 被引量:4

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部