期刊文献+

Impact of Microstructural and Surface Modifications on the Ti-45Nb Alloy’s Response to Bio-Environment

原文传递
导出
摘要 The Ti-45Nb (mass%) alloy’s corrosive and biocompatible response in simulated physiological conditions was investigated before and after its additional high-pressure torsion (HPT) and laser irradiation processing. The grain size reduction from 2.76 µm to ~ 200 nm and the appearance of laser-induced morphologically altered and highly oxidized surface led to the significant improvement of alloy corrosion resistance and cell–implant interaction. Moreover, an additional increase of the laser pulse energy from 5 to 15 mJ during the alloy irradiation in the air led to an increase in the surface oxygen content from 13.64 to 23.89% accompanied by an increase of excellent cell viability from 127.18 to 134.42%. As a result of the controlled alloy microstructural and surface modifications, the formation of protective bi-modal mixed Ti- and Nb-oxide external scale was enabled. The presence of this surface oxide scale enhanced the alloy’s resistance to corrosion deterioration and simultaneously boosted cell viability and proliferation.
出处 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2024年第7期1215-1230,共16页 金属学报(英文版)
基金 supported by the Ministry of Science,Technological Development and Innovation of the Republic of Serbia through Contract Nos.451-03-47/2023-01/200017 and 451-03-66/2024-03/200017 and the Ph.D.fellowship of Slađana Laketić.
  • 相关文献

参考文献1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部