摘要
为明晰缝合工艺对针刺结构复合材料Ⅰ型层间力学性能的影响,以石英机织布和石英纱线为原料,设计制备了针刺/缝合多尺度联锁织物及复合材料,采用Micro-CT对多尺度联锁织物结构进行表征,进一步研究了多尺度联锁复合材料Ⅰ型层间力学行为,同时建立了Ⅰ型层间断裂行为有限元分析模型,阐明了多尺度联锁复合材料的层间强化机制。研究结果表明:相比针刺复合材料,多尺度联锁复合材料的层间载荷值最大提高46.61%,临界能量释放率最大提高55.55%;在缝合矩阵不变的情况下,单束缝合纱线从100 tex增大到200 tex,最大破坏载荷提高了12.91%,临界能量释放率提高了17.8%;随着缝合矩阵增大,总植入量从800 tex增大到1600 tex后,最大破坏载荷提高了22.8%,临界能量释放率提高了47.3%;此外,多尺度联锁复合材料有限元模型的Ⅰ型层间断裂模拟结果与实验结果相吻合,最大误差仅为3.1%,建立的有限元模型可较为准确地预测多尺度联锁复合材料Ⅰ型层间失效行为。
Objective Non-felt needled/stitched multi-scale interlocking composites is a new type of fabric structure which enhances interlamainar strength,and it is excepted to meet the working requirements in complex environments such as hypersonic vehicles.However,the effect of stitching process on the mechanical properties of modeⅠinterlaminar property of non-felt needled composites is still unclear.In order to explore the influence of different stitching processes on the interlaminar properties of multi-scale interlocking composites and predict the modeⅠfracture behavior,multi-scale interlocking fabrics and composites are prepared,and a finite element model of modeⅠfracture behavior of multi-scale interlocking composite is established.Method In this research,quartz yarn and quartz fabrics are used as raw materials for the preparation of the multi-scale interlocking fabrics and composite.According to ASTM D5528 experimental standard,modeⅠfracture behavior was tested with the prepared samples.Micro-CT and scaming electron microswpe(SEM)were used to observe and analyze the fabric structure and fracture morphology of the samples.A finite element model of mode I fracture behavior of multi-scale interlocked composites is established by using the 3 cohesive model.Results The results showed that the introduction of stitching yarns significantly improved the interlaminar property of needled composites.The maximum interlaminar fracture load of the needled composite reached 81.56 N.The interlaminar fracture load values of multi-scale interlocking composites with different stitching matrices and fiber volume contents were 97.31 N,107.84 N,and 119.57 N,respectively.Compared with the needled composite,the interlaminar fracture strength was improved by 19.31%-46.61%.The critical energy release rate of needled composite was 1.80 J/m^(2),and the critical energy release rates of multi-scale interlocking composites with different preparation processes were 1.96 J/m^(2),2.24 J/m^(2)and 2.80 J/m^(2),respectivey.Compared with the nee
作者
陈小明
吴凯杰
郑宏伟
张敬义
苏星兆
辛世纪
郭东升
陈利
CHEN Xiaoming;WU Kaijie;ZHENG Hongwei;ZHANG Jingyi;SU Xingzhao;XIN Shiji;GUO Dongsheng;CHEN Li(School of Textile Science and Engineering,Tiangong University,Tianjin 300387,China;Key Laboratory of Advanced Textile Composite Materials of Ministry of Education,Tiangong University,Tianjin 300387,China;School of Mechanical Engineering,Tiangong University,Tianjin 300387,China;Aerospace Research Institute of Materials&Processing Technology,Beijing 100080,China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2024年第8期173-182,共10页
Journal of Textile Research
基金
天津市自然科学基金项目(19JCYBJC18300)
先进功能复合材料技术重点实验室基金项目(6142906210406)。
关键词
针刺
织物
复合材料
缝合
层间强度
needling
fabric
composite
stitching
interlaminar strength