期刊文献+

Compressed Least Squares Algorithm of Continuous-Time Linear Stochastic Regression Model Using Sampling Data

原文传递
导出
摘要 In this paper,the authors consider a sparse parameter estimation problem in continuoustime linear stochastic regression models using sampling data.Based on the compressed sensing(CS)method,the authors propose a compressed least squares(LS) algorithm to deal with the challenges of parameter sparsity.At each sampling time instant,the proposed compressed LS algorithm first compresses the original high-dimensional regressor using a sensing matrix and obtains a low-dimensional LS estimate for the compressed unknown parameter.Then,the original high-dimensional sparse unknown parameter is recovered by a reconstruction method.By introducing a compressed excitation assumption and employing stochastic Lyapunov function and martingale estimate methods,the authors establish the performance analysis of the compressed LS algorithm under the condition on the sampling time interval without using independence or stationarity conditions on the system signals.At last,a simulation example is provided to verify the theoretical results by comparing the standard and the compressed LS algorithms for estimating a high-dimensional sparse unknown parameter.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2024年第4期1488-1506,共19页 系统科学与复杂性学报(英文版)
基金 supported by the Major Key Project of Peng Cheng Laboratory under Grant No.PCL2023AS1-2 Project funded by China Postdoctoral Science Foundation under Grant Nos.2022M722926 and2023T160605。
  • 相关文献

参考文献2

二级参考文献25

  • 1J. C. Doyle, K. Glover, P. P. Khargonekar, and B. A. Francis, State-space solutions to standard H2 and H∞ control problems, IEEE Transactions on Automatic Control, 1989, 34(8): 831-847. 被引量:1
  • 2D. J. Limebeer and U. Shaked, New results in H∞ filtering, Proceedings of the International Symposium on the Mathematical Theory of Networks and Systems, 1991. 被引量:1
  • 3I. Yaesh and U. Shaked, H∞ optimal estimation -- The discrete time case, Proceeding of the Mathematical Theory of Networks and Systems, 1991. 被引量:1
  • 4M. Green and D. J. N, I~imebeer, Linear Robust Control, Prentice-Hall, Englewood Cliffs, N J, 1995. 被引量:1
  • 5P. P. Khargonekar and K. M. Nagpal, Filtering and smoothing in an H∞ setting, IEEE Transactions on Automatic Control, 1991, 36(2): 152-166. 被引量:1
  • 6T. Basar, Optimum performance levels for minimax filters, predictors and smoothers, System & Control Letters, 1991, 16(5): 309-317. 被引量:1
  • 7H. Kwakernaak, A polynomial approach to minimax frequency domain optimization of multivari- able feedback systems, International Journal of Control, 1986, 44(1): 117-156. 被引量:1
  • 8M. J. Grimble, Polynomial matrix solution of the H∞ filtering problem and the relationship to Riccati equation state-space results, IEEE Transactions on Signal Processing, 1993, 41(1): 67-81. 被引量:1
  • 9J. Nilsson, B. Bernhardsson, and B. Wittenmark, Stochastic analysis and control of real-time systems with random time delays, Automatica, 1998, 34(1): 57-64. 被引量:1
  • 10B. Sinopoli, L. Schenato, M. Franceschetti, et al., Optimal control with unreliable communication: The TCP case, Proceeding of the American Control Conference, 2005, 5: 3354-3359. 被引量:1

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部