期刊文献+

基于TensorFlow和CNN模型的验证码识别研究

Research on Captcha Recognition Based on TensorFlow and CNN Model
下载PDF
导出
摘要 针对传统机器学习中应用于多位字符验证码的分割识别方法具有整体准确率低、泛化能力不足的问题,提出一种高效通用的识别方法。设计基于CNN模型的端到端字符型验证码识别流程,使用TensorFlow框架实现流程的数据训练和效果验证。该方法可以高效地识别出字符型验证码,其平均准确率为95%以上,输入整张图片,直接输出整体识别结果,具有更强的通用性。使用CNN模型识别多位字符验证码相比于传统机器学习方法具有更高的准确率和通用性。 Aiming at the problems of low overall accuracy and insufficient generalization ability of segmentation and recognition methods applied to multi character captcha in traditional Machine Learning,an efficient and universal recognition method is proposed.It designs an end-to-end character captcha recognition process based on CNN model,and uses TensorFlow framework to implement data training and effectiveness verification of the process.This method can efficiently recognize character captcha with an average accuracy of over 95%.By inputting the entire image and directly outputting the overall recognition result,it has stronger universality.It uses CNN models to recognize multi character captcha has higher accuracy and versatility compared to traditional Machine Learning methods.
作者 马凯 贺晓松 MA Kai;HE Xiaosong(Chongqing Institute of Engineering,Chongqing 400056,China)
机构地区 重庆工程学院
出处 《现代信息科技》 2024年第13期65-69,共5页 Modern Information Technology
基金 重庆工程学院校内科研基金(2022xzcr02)。
关键词 验证码识别 TensorFlow CNN 端到端 captcha recognition TensorFlow CNN end-to-end
  • 相关文献

参考文献7

二级参考文献66

  • 1韩国强,田绪红,李志垣,司徒志远.三维图像骨架化方法综述[J].小型微型计算机系统,2007,28(9):1695-1699. 被引量:8
  • 2王虎,冯林,孙宇哲.数字验证码识别算法的研究和设计[J].计算机工程与应用,2007,43(32):86-88. 被引量:18
  • 3Chellapilla K,Simard P Y.Using machine learning to break visual human interaction proofs[C]//Advances in Neural Information Processing Systems.Cambridge:MIT Press,2005:265-272. 被引量:1
  • 4Huang S Y,Lee Y K,Bell G,et al.An efficient segmentation algorithm for CAPTCHAs with line cluttering and character warping[J].Multimedia Tools and Applications,2010,48(2):267-289. 被引量:1
  • 5Franc V,Hlavac V.License plate character segmentation using hidden Markov chains[C]//Lecture Notes in Computer Science,vol 3663.Berlin:Springer-Verlag,2005:385-392. 被引量:1
  • 6Mohebi E,Bagirov A.A convolutional recursive modified self organizing map for handwritten digits recognition[J].Neural Networks,2014,60:104-118. 被引量:1
  • 7Furukawa T.SOM of SOMs[J].Neural Networks,2009,22(4):463-478. 被引量:1
  • 8Rusu A,Thomas A,Govindaraju V.Generation and use of handwritten CAPTCHAs[J].International Journal on Document Analysis and Recognition,2010,13(1):49-64. 被引量:1
  • 9Liu Hongzhi,Wu Zhonghai,Frank H,et al.On the generation and pruning of skeletons using generalized Voronoi diagrams[J].Pattern Recognition Letters,2012,33(16):2113-2119. 被引量:1
  • 10Liu Chenglin,Kim I J,Kim J H.Model-based stroke extraction and matching for handwritten Chinese character recognition[J].Pattern Recognition,2001,34(12):2339-2352. 被引量:1

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部