摘要
Colorectal cancer(CRC) is one of the major causes of cancer-related mortality worldwide. Most near-infrared(NIR) agents used in clinical CRC treatment are at NIR-I(700–900 nm) window, which has limitations on deep tissue, and fluorescent probes in the second NIR(1,000–1,700 nm) allow high-resolution bioimaging with deep tissue penetration. However, existing NIR-II fluorophores used in clinical are still rare. Herein, based on shielding-donor-acceptor-donor-shielding(S-D-A-D-S) scaffold, we developed an organic small-molecule fluorophore IR-BTGP with NIR-II emission for imaging-guided photothermal therapy(PTT) in CRC mice model. Amphiphilic IR-BTGP can be self-assembled into spherical nano-micelles, which presents reliable water solubility and photothermal conversion efficiency(30.2%). In vitro experiments indicate that cancer cells treated with IRBTGP were significantly killed upon 808 nm light irradiation. Furthermore, in vivo NIR-II fluorescence imaging confirms that IR-BTGP accumulates in the tumor region. Remarkably, a significant tumor inhibition rate(78.5%) was observed in tumorbearing mice when treated with IR-BTGP plus 808 nm irradiation. Therefore, this work shows that IR-BTGP holds great promise as an NIR-II fluorescence imaging-guided PTT platform for CRC in the future.
基金
supported by the National Natural Science Foundation of China (22374065)
the Science and Technology Innovation Program of Hunan Province “Huxiang Young Talents Plan”(2021RC3106)
the Key Research and Development Program of Hunan Province,China (2022SK2053)。