期刊文献+

基于多绘制管线的大规模并行体绘制性能优化技术

Performance Optimization Technique for Large-Scale Parallel Volume Rendering Based on Multiple Rendering Pipelines
下载PDF
导出
摘要 针对数值模拟输出的大规模科学数据,体绘制方法为了刻画复杂物理特征,会进行高密度光线采样,但由此带来了极大的计算开销和数据增量。在国产自主CPU高性能计算机上,由于处理器单核的计算能力低于商业CPU,只能使用更多的处理器核来分担体绘制任务,从而引起了采样数据并行通信的可扩展性瓶颈。为充分利用国产自主CPU高性能计算机来高效完成体绘制任务,针对大规模并行体绘制提出一种基于多绘制管线的性能优化技术,通过多管线、多进程的两级并行模式来降低单条管线的并行规模。在大规模并行体绘制中,该技术将绘制目标图像划分成多个子区域,绘制进程则相应分组,每个进程组独立执行一条绘制管线,以完成图像相应子区域的绘制,最后再收集所有的图像子区域,形成完整图像并输出。实验结果表明,优化后的体绘制算法在国产自主CPU高性能计算机上可以扩展到万核规模,并能有效完成体绘制任务。 For large-scale scientific data output in numerical simulations,volume rendering methods inevitably perform high-density ray sampling to capture complex physical features,resulting in significant computational overhead and data increment.However,on domestic autonomous-CPU supercomputers,owing to the lower computing power of a single processor core compared to that of commercial CPU,more processor cores must be used to share volume rendering tasks;this leads to scalability bottlenecks in the parallel communication of sampling data.Full utilization of domestic autonomous-CPU supercomputers to efficiently complete volume rendering tasks is an urgent problem that needs to be solved.To address this problem,this paper proposes a performance optimization technique for large-scale parallel volume rendering based on multiple rendering pipelines;here,the parallel scale of a rendering pipeline is reduced by two-level parallelism:first,at the pipeline level,and then,at the process level.In large-scale parallel volume rendering after optimization,the rendered goal image is first divided into multiple sub-regions,and all rendering processes are grouped accordingly.Each process group then executes a rendering pipeline independently,and as a result,the corresponding sub-region of the image is produced.Finally,all sub-regions of the image are collected,and the whole image is output.Experiments demonstrate that the optimized volume rendering algorithm can scale to approximately 10000 processing cores on domestic autonomous-CPU supercomputers and can effectively complete volume rendering tasks.
作者 王华维 刘若妍 艾志玮 曹轶 WANG Huawei;LIU Ruoyan;AI Zhiwei;CAO Yi(Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing 100088,China;CAEP Software Center for High Performance Numerical Simulation,Beijing 100088,China)
出处 《计算机工程》 CAS CSCD 北大核心 2024年第8期207-215,共9页 Computer Engineering
基金 国家重点研发计划(2017YFB0202203)。
关键词 体绘制 多管线 两级并行 并行可扩展性 性能优化 volume rendering multiple pipelines two-level parallelism parallel scalability performance optimization
  • 相关文献

参考文献5

二级参考文献24

  • 1吴恩华,柳有权.基于图形处理器(GPU)的通用计算[J].计算机辅助设计与图形学学报,2004,16(5):601-612. 被引量:227
  • 2Cabral B, Cam N, Foran J. Accelerated volume rendering and tomographic reconstruction using texture mapping hardware [C]//Proceedings of Symposium on Volume Visualization, Washington D C, 1994:91-98+131 被引量:1
  • 3Engel K, Kraus M, Ertl T. High quality pre integrated volume rendering using hardware accelerated pixel shading [C]//Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, Los Angeles, 2001:9-16 被引量:1
  • 4Meiβner M, Guthe S, Straβer W. Interactive lighting models and pre integration for volume rendering on PC graphics accelerators [C] //Proceedings of Graphics Interface, Calgary, 2002:209-218 被引量:1
  • 5Meiβner M, Hoffmann U, Straβer W. Enabling classification and shading for 3D texture mapping based volume rendering using OpenGL and extensions [C]//Proceedings of the Conference on Visualization, San Francisco, 1999:207-214 被引量:1
  • 6Kraus M, Ertl T. Adaptive texture maps [C] //Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, Saarbrucken, 2002:7-15 被引量:1
  • 7Binotto A P D, Comba J L D, Freitas C M D F. Real-time volume rendering of time varying data using a fragment shader compression approach [C]//Proceedings of IEEE Symposium on Parallel and Large-Data Visualization and Graphics, Washington D C, 2003: 69-75 被引量:1
  • 8Fout N, Akiba H, Ma K L, etal. High quality rendering of compressed volume data formats [C] //Proceedings of EUROGRAPHICS-IEEE VGTC Symposium on Visualization, Leeds, 2005: 77-84 被引量:1
  • 9Guthe S, Wand M, Gonser J, et al. Interactive rendering of large volume data sets [C] //Proceedings of IEEE Visualization, Boston, 2002:53-60 被引量:1
  • 10Linde Y, Buzo A, Gray R M. An algorithm for vector quantizer design [J]. IEEE Transactions on Communication, 1980, COM-28(1): 84-95 被引量:1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部