摘要
为减少自然积尘引起的发电效率损失,光热电站需要定期清洗定日镜,如何选取合适的清洗节点,是提高经济效益的关键。针对于此,提出了一种基于气象预报数据的定日镜反射率变化预测模型,以供光热电站根据反射率的变化趋势,灵活安排人工清洗。对影响定日镜积尘的因素进行了分析;在研制人工积尘室并进行相关的定性实验基础上,构建了基于神经网络的反射率预测模型;通过室外积尘实验,对模型的效果进行了初步评估。实验结果表明,该模型能有效预测反射率的变化趋势,与实测数据的平均相对误差为1.28%,均方根误差为1.34%,对光热电站清洗计划的制定具有借鉴意义。
In order to reduce the loss of power generation efficiency caused by natural dust accumulation,the solar thermal power station needs to clean the heliostat regularly.How to select the appropriate cleaning node is the key to improve economic benefits.In view to this,a prediction model of heliostat reflectivity change based on meteorological forecast data is proposed,which can be used for the solar thermal power station to flexibly arrange manual cleaning according to the reflectivity change trend.The factors affecting the dust accumulation of heliostats are analyzed.An artificial dust accumulation chamber is developed to carry out relevant qualitative experiments,and on this basis,a reflectivity prediction model based on neural network is constructed.Through outdoor dust accumulation experiments,the effect of the model is preliminarily evaluated.The experimental results show that the model can effectively predict the change trend of reflectivity.The average relative error with the measured data is 1.28%,and the root mean square error is 1.34%,which is of reference significance for the formulation of cleaning plan of solar thermal power stations.
作者
郭经天
陈乐
GUO Jingtian;CHEN Le(College of Electrical and Mechanical Engineering,China Jiliang University,Hangzhou 310018,Zhejiang,China)
出处
《水力发电》
CAS
2024年第8期84-88,共5页
Water Power
基金
国家重点研发计划(2017YFF0210702)。
关键词
光热发电
定日镜
积尘
反射率
神经网络
预测模型
solar thermal power generation
heliostat
dust accumulation
reflectivity
neural network
prediction model