期刊文献+

基于3D线激光传感器的轨道弹条扣件结构缺陷检测方法

Detection method for structural defects of railway clip fastener based on 3D line laser sensor
下载PDF
导出
摘要 轨道扣件缺陷是铁路安全运行的重大安全隐患,基于二维图像处理方法能检测扣件外观缺陷,但难以检测扣件结构缺陷,提出了一种3D线激光传感器的轨道扣件结构缺陷检测方法。首先,利用3D线激光传感器获取轨道点云,根据扣件高度快速定位扣件区域点云,利用PointNet++网络对扣件区域点云分割获得弹条点云;其次,将弹条点云映射至二维图像,在二维图像中提取弹条骨架,二维骨架融合至三维点云获得初始骨架,对每个初始骨架点云拟合截面圆,以各截面圆心作为弹条骨架精确表示弹条轮廓及空间结构;最后,提取弹条三维骨架的特征点,根据特征点构造扣压平面和计算弹条缝隙,基于弹条缝隙检测扣件结构缺陷。为了验证文中方法的有效性,以WJ-7、WJ-8、WJ-2型弹条扣件为对象测量弹条缝隙,并将文中方法测量的弹条缝隙与人工使用缝隙尺测量的真实值进行比较,单个扣件的测量误差在0.1 mm内,且文中方法对轨道油污、锈斑及环境有较好的鲁棒性;对批量扣件的结构缺陷检测,当测量误差允许在±0.1 mm时,扣件结构缺陷检测的准确率不低于95%。 Objective Rail fasteners play a vital role in railway infrastructure by securing rails to sleepers and preventing misalignment. Prolonged usage of these fasteners can lead to different types of defects, including visual defects such as missing, fractured, and misplaced fasteners, as well as structural defects like overly loose or tight fasteners. These defects can range from minor issues affecting passenger comfort to serious risks of derailment,posing significant safety concerns for railway operations. The use of two-dimensional visual imaging techniques allows for quick identification of visual fastener defects, while three-dimensional vision sensors capture color and depth images simultaneously. Implementing multi-modal image fusion methods helps mitigate environmental and illumination effects to improve the accuracy of visual defect detection. Three-dimensional structured light imaging aids in accurately capturing the 3D point cloud of the railway track, enabling the detection of structural defects using the fastener's spatial structure. However, further improvements are needed to enhance the accuracy and reliability of structural defect detection. As a result, a new detection approach for structural defects in railway clip fasteners based on 3D line laser sensors is proposed.Methods Initially, a 3D line laser sensor is employed to capture the point cloud of the railway track.Subsequently, the point cloud corresponding to the fastener area is swiftly identified based on the fastener's height, and the metal clip point cloud is separated from this region using the PointNet++ network. The clip point cloud is then projected onto a 2D image, from which the clip skeleton is derived. This 2D skeleton is then transformed back into the 3D point cloud to establish the initial clip skeleton, with each point being approximated by a circular cross-section to determine the clip skeleton's center representing the clip's outline and spatial arrangement. Following this, feature points of the clip's 3D skeleton are extracted,
作者 袁小翠 王咏涛 刘宝玲 侯迪波 江宗辉 YUAN Xiaocui;WANG Yongtao;LIU Baoling;HOU Dibo;JIANG Zonghui(School of Electrical Engineering,Nanchang Institute of Technology,Nanchang 330099,China;College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《红外与激光工程》 EI CSCD 北大核心 2024年第7期154-168,共15页 Infrared and Laser Engineering
基金 国家自然科学基金项目(62001202)。
关键词 轨道扣件 结构缺陷 松紧检测 弹条缝隙 骨架提取 railway fastener structural defects tightness detection clip gap skeleton extraction
  • 相关文献

参考文献8

二级参考文献65

  • 1苗艳龙,彭程,高阳,仇瑞承,李寒,张漫.基于地基激光雷达的玉米株高与茎粗自动测量研究[J].农业机械学报,2021,52(S01):43-50. 被引量:8
  • 2宁业衍,方宇,杨皓,杭观荣,陶翰中,张汝枭.基于距离判断函数的钢轨扣件分割方法[J].智能计算机与应用,2021,11(11):64-67. 被引量:1
  • 3肖新标,金学松,温泽峰.钢轨扣件失效对列车动态脱轨的影响[J].交通运输工程学报,2006,6(1):10-15. 被引量:45
  • 4De Ruvo G, De Ruvo P, Marino F, et al. A FPGA-based architecture for automatic hexagonal bolts detection in railway maintenance [ C ]// Proc of the 7th International Workshop on Computer Architecture for Machine Perception. [ S. 1. ] : IEEE Press, 2005 : 219-224. 被引量:1
  • 5Hsieh H Y, Chen Nanming, Liao Chinglung. Visual recognition sys- tem of elastic rail clips for mass rapid transit systems [ C ]//Proc of ASME/IEEE Joint Rail Conference and Internal Combustion Engine Division Spring Technical Conference. [ S. 1. ] : ASME, 2007: 319- 325. 被引量:1
  • 6Yang Jinfeng, Tao Wei, Liu Manhua, et al. An efficient direction field-based method for the detection of fasteners on high-speed rail- ways[J]. Sensors, 2011, 11 (8) : 7364-7381. 被引量:1
  • 7Dou Yunguang, Huang Yaping, Li Qingyong, et al. A fast template matching-based algorithm for railway bolts detection[J]. Internatio- nal Journal of Machine Learning and Cybernetics, 2014, 5(6): 835-844. 被引量:1
  • 8Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) : 91-110. 被引量:1
  • 9Geng Cong, Jiang Xudong. Face recognition using sift features [ C ]// Proc of the 16th IEEE International Conference on Image Processing. [S. 1. I : IEEE Press, 2009: 3313-3316. 被引量:1
  • 10Zhou Ru, Sin Sangwoo, Li Dongju, et al. Adaptive SIFT-based algo- rithm for specific fingerprint verification [ C ]//Proc of IEEE Interna- tional Conference on Hand-based Biometrics. [ S. 1. ] : IEEE Press, 2011: 1-6. 被引量:1

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部