期刊文献+

一种基于双光源和偏振技术的平坦光频梳产生方案

Flat optical frequency comb generation scheme based on dual light sources and polarization technology
下载PDF
导出
摘要 为了提高光频梳(OFC)平坦度及梳线数量,提出了一种基于双光源和偏振技术的平坦OFC产生方案。该方案首先通过调整光相位调制器(O-PM)调制指数实现除主载波外8根平坦梳线,再利用偏振技术改变主载波处的峰值功率,产生平坦OFC。仿真结果表明:当O-PM调制指数设定为2.62时,即射频信号E_(1)(t)的幅度E_(1)达到1.67 V时,能够生成除中心载波外的8根梳线平坦梳线;在偏振控制器偏振角度φ为29.8°、线偏振器偏振角度α为45°的条件下,该方案能够生成梳线数量为10、平坦度达到0.01 dB、边模抑制比为6.15 dB的高平坦OFC;与单一光源相比,双光源线宽的变化对平坦度的影响更小。 To improve the flatness of optical frequency combs(OFC)and the number of comb lines,a scheme for generating flat OFC based on dual light sources and polarization technology is proposed.This scheme first achieves eight flat comb lines other than the main carrier by adjusting the modulation index of the optical phase modulator(O-PM).Then,it utilizes polarization technology to alter the peak power at the main carrier,resulting in a flat OFC.The simulation results indicate that when the O-PM modulation index is set to 2.62,which corresponds to an amplitude E_(1)of 1.67 V for the radio frequency signal E_(1)(t),eight flat comb lines excluding the central carrier can be generated.Under the conditions of a polarization controller angleφof 29.8°and a linear polarizer angleαof 45°,this scheme can produce a highly flat OFC with 10 comb lines,a flatness of 0.01 dB,and a side-mode suppression ratio of 6.15 dB.Compared to a single light source,the influence of linewidth changes in dual light sources on flatness is smaller.
作者 孙秀婷 范亚斌 罗静 杨蓓 卢智嘉 SUN Xiuting;FAN Yabin;LUO Jing;YANG Bei;LU Zhijia(Sifang College,Shijiazhuang Tiedao University,Shijiazhuang 051132,China;Shijiazhuang University,Shijiazhuang 050035,China;Mechanical and Electrical College,Shijiazhuang University,Shijiazhuang 050035,China)
出处 《光通信技术》 北大核心 2024年第4期93-97,共5页 Optical Communication Technology
基金 河北省省级科技计划项目(22320301D)资助 石家庄市科学技术研究与发展计划项目(211080571)资助。
关键词 光频梳 偏振技术 双光源 平坦度 optical frequency comb polarization technology dual light sources flatness
  • 相关文献

参考文献7

二级参考文献20

  • 1T. Kuri, T. Nakasyotani, H. Toda, and K.-I. Kitayama, IEEE Photon. Technol. Lett. 17, 1274 (2005). 被引量:1
  • 2I. L. Gheorma and G. K. Gopalakrishnan, IEEE Photon. Technol. Lett. 19, 1011 (2007). 被引量:1
  • 3S. Hisatake, Y. Nakase, K. Shibuya, and T. Kobayashi, Opt. Lett. 30, 777 (2005). 被引量:1
  • 4J. J. Veselka and S. K. Korotky, IEEE Photon. Technol. Lett. 10, 958 (1998). 被引量:1
  • 5C.-B. Huang, Z. Jiang, D. E. Leaird, and A. M. Weiner, Electron. Lett. 42, 1114 (2006). 被引量:1
  • 6Y. Kim, S. Doucet, M. E. M. Pasandi, and S. LaRochelle, Opt. Express 16, 1068 (2008). 被引量:1
  • 7M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, J. Lightwave Technol. 21, 2705(2003). 被引量:1
  • 8V. Torres-Company, J. Lancis, and P. Andres, Opt. Lett. 33, 1822 (2008). 被引量:1
  • 9D. Miyamoto, K. Mandai, T. Kurokawa, S. Takeda, T. Shioda, and H. Tsuda, IEEE Photon. Technol. Lett. 18, 721 (2006). 被引量:1
  • 10T. Hoshi, T. Shioda, Y. Tanaka, and T. Kurokawa, in Proceedings of OFC/NFOEC 2007 OMS6 (2007). 被引量:1

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部