期刊文献+

基于Attention-CNN的振动信号电机转子断条识别

Vibration Signal Used Motor Broken Rotor Bar Identification Based on Attention-CNN
下载PDF
导出
摘要 针对基于振动信号的转子断条诊断技术依赖于人工特征选择,泛化能力差,以及常规卷积神经网络(Convolution neural network,CNN)模型在对时序信号自动特征提取时忽略序列信息的问题,利用Attention机制对局部特征在整体表达时的度量能力,提出了一种Attention-CNN网络模型。首先通过Attention在原始信号上分配注意力,其次结合CNN进行特征提取构建网络,然后利用粒子群优化算法(Particle swarm optimization,PSO)进行网络超参数寻优,训练转子断条识别模型,最后从整体和局部两个方面进行模型评价。试验结果表明,所提出的识别模型能够达到传统诊断水平,且泛化能力高于现有方法,更适用于通过振动信号进行电机转子断条识别。 Aiming at the problems that the vibration signal-based broken rotor bar diagnosis technique relies on manual feature selection with poor generalization ability and conventional convolution neural network(CNN)models that ignore sequence information in automatic feature extraction of time-series signals,an Attention-CNN network model is proposed using the Attention mechanism for the metric ability of local features in the overall expression.Firstly,attention is assigned on the original signal by Attention,secondly,the network is constructed by combining CNN for feature extraction,then the particle swarm optimization(PSO)algorithm is used to perform network hyperparameter search and train the broken rotor bar recognition model,and finally,the model is evaluated from both overall and local aspects.The experimental results show that the proposed recognition model can reach the traditional diagnosis level and has a higher generalization capability than existing methods,and is more suitable for motor broken rotor bar recognition through vibration signals.
作者 申海锋 石颉 杜国庆 吴宏杰 SHEN Haifeng;SHI Jie;DU Guoqing;WU Hongjie(School of Electronics and Information Engineering,Suzhou University of Science and Technology,Suzhou 215009;Jiangsu Provincial Key Laboratory of Building Intelligent Energy Conservation,Suzhou University of Science and Technology,Suzhou 215009)
出处 《电气工程学报》 CSCD 北大核心 2024年第2期9-15,共7页 Journal of Electrical Engineering
基金 国家自然科学基金(62073231) 江苏省研究生实践创新计划(SJCX22_1581)资助项目。
关键词 Attention-CNN 振动信号 转子断条 泛化能力 Attention-CNN vibration signal broken rotor bar generalization ability
  • 相关文献

参考文献7

二级参考文献81

共引文献133

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部