摘要
目的 基于远程光电容积脉搏波描记法(remote photoplethysmograph,rPPG)的非接触人脸视频心率检测广泛应用于移动健康监护领域,由于其携带的生理参数信息幅值微弱,容易受到运动伪迹干扰。据此,提出了一种结合非负矩阵分解(nonnegative matrix factorization,NMF)和独立向量分析(independent vector analysis,IVA)的非规律运动伪迹去除的视频心率检测方法,记为NMF-IVA。方法 首先,将面部感兴趣区域(region of interest,RoI)分为多个子区域(sub RoIs,SRoIs),利用平均光照强度、光照强度变化、信噪比这3个指标筛选出3个最优质的SRoIs,并获取每个SRoI的绿色通道时间序列。其次,将3个绿色通道时间序列去趋势、带通滤波后送入NMF-IVA进行盲源分离。然后,对分离后的源信号进行功率谱密度分析,并且将峰值信噪比最高且主频落在心率感兴趣范围内的源信号确定为血容量脉冲(blood volume pulse,BVP)信号。最后,将BVP信号的主频确定为所测量心率的主频,从而计算出心率值。结果 实验在2个公开数据集UBFC-RPPG和UBFC-PHYS,及1个真实场景自采数据集上与最相关的7种典型的rPPG方法进行比较,在UBFC-RPPG数据集上,相比于性能第2的单通道滤波(single channel filtering,SCF)方法,均方根误差提升了1.39 bpm(beat per minute)、平均绝对误差提升了1.25 bpm、皮尔逊相关系数提升了0.02;在UBFC-PHYS数据集上的T2情况下,其性能提升最为显著,相比于性能第2的独立向量分析(IVA)方法,均方根误差提升了16.42 bpm、平均绝对误差提升了9.91 bpm、皮尔逊相关系数提升了0.64;在自采数据集上,除了低于深度学习方法性能之外,所提NMF-IVA方法在传统方法中取得了最好的结果。结论 所提NMF-IVA方法对规律信号提取具有敏感性,即便是在头部存在剧烈非规律运动情况下,相比于传统方法亦能取得最优结果,该结果能够媲美基于深度学习的方法。
Objective Heart rate(HR) is one of the most important physiological parameters that can reflect the physical and mental status of individuals.Various methods have been developed to estimate HR values using contact and noncontact sensors.The advantage of noncontact methods is that they provide a more comfortable and unobtrusive way to estimate HR and avoid discomfort or skin allergy caused by conventional contact methods.The pulse-induced subtle color variations of facial skins can be measured from consumer-level cameras.Thus,camera-based non-contact HR detection technology,also called remote photoplethysmograph(rPPG),has been widely used in the fields of mobile health monitoring,driving safety,and emotion awareness.The principle of camera-based rPPG measurement is similar to that of traditional PPG measurement,that is,the pulsatile blood propagating in cardiovascular systems changes blood volumes in microvascular tissue beds beneath skins with each heartbeat,thus producing a fluctuation.However,such technology is susceptible to motion artifacts due to weak amplitudes of the physiological parameter information it carries.For instance,subjects' heads may move involuntarily during interviews,presentations,and other socially stressful situations,thus degrading rPPG-based HR detection performance.Accordingly,this paper proposes a novel motion-robust rPPG method that combines nonnegative matrix factorization(NMF) and independent vector analysis(IVA),termed as NMF-IVA,to remove irregular motion artifacts.Method First,the whole facial region of interest(RoI) is divided into several sub RoIs(SRoIs),among which three optimal SRoIs are selected based on three indicators:average light intensity,light intensity variation of a certain SRoI,and signal-to-noise ratio(SNR) of the green-channel signal derived from the SRoI.Afterwards,three green-channel time series are derived from the corresponding three optimal SRoIs.Second,the three channels of time series are detrended,bandpass filtered,and then sent to the proposed NMF-IVA as
作者
成娟
殷辰楚
宋仁成
付静
刘羽
Cheng Juan;Yin Chenchu;Song Rencheng;Fu Jing;Liu Yu(Department of Biomedical Engineering,Hefei University of Technology,Hefei 230009,China;Anhui Province Key Laboratory of Measuring Theory and Precision Instrument,Hefei University of Technology,Hefei 230009,China)
出处
《中国图象图形学报》
CSCD
北大核心
2024年第7期2024-2034,共11页
Journal of Image and Graphics
基金
国家自然科学基金项目(62171176,62176081,62271186)
中央高校基本科研业务费专项资金资助(JZ2021HGPA0061)。