期刊文献+

共线平动点中心流形上的轨道转移问题

Orbital Transfer Problem on the Central Manifold of Libration Points
下载PDF
导出
摘要 圆形限制性三体问题共线平动点附近的平动点轨道由于其独特的动力学特性,在深空探测任务中有着重要价值,这些轨道间的轨道转移问题值得进行系统性研究.针对平动点轨道的计算与延拓,提出了一种基于数值的系统性计算平动点轨道的方法以及状态伴随法的轨道稳定维持策略.在此基础上,通过对大量平动点轨道不变流形以及平动点相空间中心流形的研究,设计了一套通过脉冲机动实现平动点轨道间轨道转移的系统性解决方案.该方法充分利用平动点动力学特性,在仿真验证中证实了方案的有效性,为平动点轨道转移研究提供了新的思路. The Circular Restricted Three-body Problem(CR3BP)exhibits highly complex nonlinear dynamical characteristics in the vicinity of its libration points.The various periodic and quasi-periodic orbits within this region hold significant value for increasingly complex deep space exploration missions,offering more possibilities and flexibility in the design and control of mission trajectories.The issue of or-bit transfers between these libration points warrants systematic investigation.To compute orbits around libration points,a numerical computation method based on escape time is proposed,enabling the unified calculation of various quasi-periodic orbits across a broad range of energy levels.Based on the manifold configuration of libration point orbit state points,a universal orbit maintenance strategy called state-ad-joint techniques is proposed,yielding schemes that can sustain long-term stable operation of various li-bration point orbits.Building on extensive studies of invariant manifolds and Poincarésections associat-ed with numerous libration point orbits,a comprehensive solution has been designed to enable orbit transfers between libration points through pulse maneuvers.This method fully leverages the dynamical features of libration points and has been proven effective through simulation validation,offering new in-sights for research on libration point orbit transfers.
作者 杨富涛 张汉清 YANG Futao;ZHANG Hanqing(College of Astronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 211106)
出处 《空间科学学报》 CAS CSCD 北大核心 2024年第3期556-569,共14页 Chinese Journal of Space Science
关键词 圆形限制性三体问题 平动点轨道 轨道转移 庞加莱截面 Circular restricted three-body problem Libration point orbits Orbit transfer Poincarésection 2023-09-09收到原稿 2024-01-30收到修定稿
  • 相关文献

参考文献9

二级参考文献73

共引文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部