期刊文献+

Unlocking high-efficiency oxygen evolution reaction through Co-N coordination engineering in Co@N-doped porous carbon core–shell nanoparticles

原文传递
导出
摘要 Modulation of metal sites coordination can significantly refine the electronic architecture of catalysts,thereby improving their catalytic performance.This work successfully developed a core–shell Co@N-doped porous carbon(Co@NC)catalyst by pyrolyzing the COF/MOF(IISERP-COF3/ZIF-67)composite in an inert atmosphere.The Co@NC catalyst exhibited impressive oxygen evolution reaction(OER)performance,with a small overpotential of 304 mV and a modest Tafel slope of 88.6 mV·dec^(−1) in a 1 M KOH,alongside remarkable stability,maintaining 98.5%of its activity over 13 h.The role of IISERP-COF3 was pivotal in preventing Co atom aggregation during the ZIF-67 pyrolysis,which facilitated the creation of mesopores for enhanced mass transport and conductivity.Moreover,it effectively modulated the Co-N coordination to fine-tune the electronic structure,thereby optimizing the catalyst's capacity for adsorption of intermediates and boosting its intrinsic activity.Density functional theory(DFT)studies corroborate that the exceptional OER efficiency of Co@NC can be linked to the enhanced Co-N coordination,optimizing the localized electronic structure at the Co active sites.This study not only proposes an innovative approach for optimizing COF/MOF as effective electrocatalysts but also clears the path for the emergence of affordable,high-performance alternatives to precious metal-based catalysts,marking a significant advancement in sustainable energy technologies.
出处 《Nano Research》 SCIE EI CSCD 2024年第8期7068-7076,共9页 纳米研究(英文版)
基金 supported by the Platform of Science and Technology and Talent Team Plan of Guizhou province(No.GCC[2023]007) the National Natural Science Foundation of China(No.52062003).
  • 相关文献

参考文献5

二级参考文献44

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部