期刊文献+

BMLP:behavior-aware MLP for heterogeneous sequential recommendation

原文传递
导出
摘要 1 Introduction Recommender systems can effectively alleviate the problem of information overload.However,traditional recommendation methods cannot capture users’dynamic interests.Sequential recommendation methods model user sequences to obtain more accurate and dynamic user interests.Recently,deep learning-based sequential recommendation methods have achieved great success.RNN is proposed to capture the sequential information[1,2].Attention-based methods[3]use attention mechanisms to learn relationships between items.GNN-based methods[4−6]transform sequences into graph structures to capture relationships of items.However,they have the following two limitations.
出处 《Frontiers of Computer Science》 SCIE EI CSCD 2024年第3期235-237,共3页 中国计算机科学前沿(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.62172283 and 62272315).
  • 相关文献

参考文献2

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部