摘要
中西部高等教育振兴计划的颁布为长期处于相对落后的中西部高校科研水平的提升提供了政策支持。为此,研究以振兴计划扶持的100所高校为研究对象,运用非平衡面板数据的DEA-Malmquist指数方法来评价2011—2017年科研效率的变化,进一步挖掘科研水平提升的动力及阻碍。研究发现“振兴计划”高校整体科研效率处于中等偏上的水平但呈下降态势,仅有13%的高校实现了全要素增长。结合权重进一步判断,发现人才流失、经费投入冗余和科研产出不足是阻碍中西部高校科研效率提升的主要原因。因此,中西部高校要通过优化人才政策、释放经费活力、促进特色发展等要素的解决提升科研效率。
The Revitalization Plan for Higher Education in Central and Western China(hereafter referred to as the“Revitalization Plan”)has provided an unprecedented policy support for relatively underdeveloped central and western Chinese universities,especially in the area of academic research.However,the question remains whether the Revitalization Plan is effective,and whether the research has been substantially improved.Therefore,this study selected 100 universities supported by the Revitalization Plan to evaluate the changes in research efficiency from 2011 to 2017,and further explore the driving forces for the improvement of academic research using the DEA-Malmquist index method on unbalanced panel data.The results showed that the overall efficiency of these universities is not high,and even on a declining trend;and only 13%of the universities achieve total factor growth.It found that,with the weights to be taken into account,the talent drain,the funding redundancy,and the inadequate technological output are the main factors in hindering the improvement of research efficiency for the central and western universities.Therefore,it proposed that specific steps can be taken to optimize talent-related policies,unleash funding vitality,and foster characteristic development to advance the research efficiency in central and western Chinese universities.
作者
田雨珍
马占新
TIAN Yuzhen;MA Zhanxin(School of Distance Education,University of Science Malaysia,Penang 11800,Malaysia;School of Economics and Management,Inner Mongolia University,Hohhot 010021,China)
出处
《宁波大学学报(教育科学版)》
2024年第4期22-34,共13页
Journal of Ningbo University(Educational Science Edition)
基金
国家自然科学基金“基于偏序集理论的数据包络分析模型体系构建与广义DEA方法的拓展研究”(72161031)
内蒙古自然科学基金“基于偏序集理论的广义数据包络分析方法及其在中国西部地区高质量发展中的应用”(2021MS07025)。