摘要
仿生扑翼飞行器具有高机动性、高隐蔽性以及高效率等突出优势,在军事侦查、探险搜救等领域具有较好的应用前景,而其应用的基础是对生物飞行机理的深入探究.随着先进运动观测和实验技术的引入,对昆虫飞行行为的记录和分析更为便捷和准确.研究表明常见的昆虫拍打频率较高,在25~400 Hz之间,而蝴蝶较为特殊,其扑打频率较低,大约为10 Hz,对于蝴蝶的许多独特的飞行技能尚缺少足够的认识.蝴蝶前翼和后翼的翼面积都较大,身体同侧的前后翼几乎为同步拍打,且扑打幅度较大,甚至接近180°.蝴蝶飞行中身体有较大幅度的上下和俯仰震荡,翼和身体运动高度耦合.即便如此,蝴蝶仍具有敏捷的飞行能力,可以达到点对点的飞行目标,甚至上千公里的长途迁徙,是优秀的仿生学研究对象.因此,蝴蝶启发的仿生扑翼飞行器也得到了全世界研究人员的关注.蝴蝶的飞行机制相对于其他昆虫更加特殊,飞行行为和气动特性更为复杂,这使得仿蝴蝶扑翼飞行器的研制更加困难.目前对于仿蝴蝶飞行器的研制大多数对蝴蝶翼–身耦合的机理进行了简化,很少能实现受控的稳定飞行.最后,本文梳理了真实蝴蝶的飞行行为特点和飞行机理,指出了仿蝴蝶扑翼飞行器研制的关键技术,总结了该类飞行器未来的发展方向和应用前景.
Bionic flapping-wing air vehicles present notable advantages,including high maneuverability,concealment,and efficiency.They hold promising applications in military reconnaissance and exploration search and rescue,rooted in a comprehensive exploration of biological flight mechanisms.Advanced motion observation and experimental techniques have facilitated more convenient and precise recording and analysis of insect flight behavior.Research indicates that common insects exhibit a high flapping frequency,ranging from 25 to 400 Hz,while butterflies,characterized by a lower flapping frequency of approximately 10 Hz,stand out.Despite the unique attributes of butterfly flight,aerodynamic research remains scarce compared to other flying organisms,resulting in an insufficient understanding of their intricate flying skills.Butterflies,distinguished by large forewings and hindwings that flap nearly synchronously on the same side of the body,spanning a substantial range of up to 180°,display substantial pitch swing during flight,with highly coupled wing and body movements.Remarkably,despite these complexities,butterflies demonstrate agile flight capabilities,enabling them to embark on long-distance migrations spanning thousands of kilometers.This exceptional characteristic renders them exemplary subjects for bionics research,capturing the attention of scholars globally.In contrast to other insects,butterflies have a uniquely intricate flight mechanism,complicating the development of butterfly-inspired flapping-wing air vehicles.Current endeavors in this field often simplify the mechanism of butterfly wing–body motion coupling,with only a few achieving controlled and stable flight.Simultaneously,the ongoing advancements in microelectromechanical system technology,aerodynamics,and precision processing are insufficient to support the development of practical insect-scale flapping-wing air vehicles fully.Accordingly,researchers have adopted a bionic perspective,observing butterflies’free flight to understand their flapping-w
作者
张益鑫
李少石
王兴坚
王少萍
朱生华
杨梦琦
ZHANG Yixin;LI Shaoshi;WANG Xingjian;WANG Shaoping;ZHU Shenghua;YANG Mengqi(School of Automation Science and Electrical Engineering,Beihang University,Beijing 100191,China;Ningbo Institute of Technology,Beihang University,Ningbo 315800,China;Tianmushan Laboratory,Hangzhou 310023,China)
出处
《工程科学学报》
EI
CSCD
北大核心
2024年第9期1582-1593,共12页
Chinese Journal of Engineering
基金
国家自然科学基金资助项目(52205299)
中国博士后科学基金面上资助项目(2022M710304)。
关键词
蝴蝶飞行机理
仿生机器人
扑翼飞行器
气动特性
翼–身耦合
飞行控制
butterfly flight mechanism
bionic robot
flapping-wing air vehicle
aerodynamic characteristics
wing–body motion coupling
flight control