期刊文献+

基于多层级精细特征融合的步态识别算法

Gait recognition algorithm based on multi-layer refined feature fusion
下载PDF
导出
摘要 随着深度学习的引入,步态识别算法取得了很大的突破,但是仍存在忽略了浅层网络提取的细节信息,以及对不限时长的步态视频时空信息难以融合的问题。为了有效利用浅层特征和融合时空特征,提出一种基于多层级精细特征融合的跨视角步态识别算法。所提算法由两个部分组成:边缘运动捕捉模块(EMCM)用于提取包含时间信息的边缘运动特征;多层级特征提取模块(MFEM)用于提取包含不同粒度全局和局部信息的多层级精细特征。首先,使用EMCM和MFEM分别提取多层级精细特征和边缘运动特征;然后,将两个模块提取的特征融合得到具有鉴别性的步态特征;最后,在公开数据集CASIA-B上和OU-MVLP上进行多种情况下的对比实验。在CASIA-B上平均识别准确率可达89.9%,与GaitPart相比,所提算法的平均识别准确率提升了1.1个百分点;在OU-MVLP上90°视角下比GaitSet识别准确率提升了3.0个百分点。所提算法能够有效地提升多种情况下的步态识别的准确率。 Deep learning has further promoted the research of gait recognition algorithms,but there are still some problems,such as ignoring the detailed information extracted by shallow networks,and difficulty in fusing unlimited timespace information of gait videos.In order to effectively utilize shallow features and fuse time-space features,a cross-view gait recognition algorithm based on multi-layer refined feature fusion was proposed.The proposed algorithm was consisted of two parts:Edge Motion Capture Module(EMCM)was used to extract edge motion features containing temporal information,Multi-layer refined Feature Extraction Module(MFEM)was used to extract multi-layer fine features containing global and local information at different granularities.Firstly,EMCM and MFEM were used to extract multi-layer fine features and edge motion features.Then,the features extracted from the two modules were fused to obtain discriminative gait features.Finally,comparative experiments were conducted in multiple scenarios on the public datasets CASIA-B and OU-MVLP.The average recognition accuracy on CASIA-B can reach 89.9%,which is improved by 1.1 percentage points compared with GaitPart.The average recognition accuracy is improved by 3.0 percentage points over GaitSet in the 90-degree view of the OU-MVLP dataset.The proposed algorithm can effectively improve the accuracy of gait recognition in many situations.
作者 刘瑞华 郝子赫 邹洋杨 LIU Ruihua;HAO Zihe;ZOU Yangyang(School of Artificial Intelligence,Chongqing University of Technology,Chongqing 401135,China)
出处 《计算机应用》 CSCD 北大核心 2024年第7期2250-2257,共8页 journal of Computer Applications
基金 重庆市自然科学基金资助项目(CSTB2023NSCQ-MSX0319) 重庆理工大学研究生创新项目(gzlcx20223457)。
关键词 生物特征识别 步态识别 特征提取 步态轮廓序列 时空特征融合 biometric recognition gait recognition feature extraction gait silhouette sequence spatiotemporal feature fusion
  • 相关文献

参考文献5

二级参考文献101

  • 1彭彰,吴晓娟,杨军.基于肢体长度参数的多视角步态识别算法[J].自动化学报,2007,33(2):210-213. 被引量:10
  • 2Little J,Boyd J E.Recognizing People by Their Gait:The Shape of Motion.Videre:Journal of Computer Vision Research,1998,1(2):1-32. 被引量:1
  • 3Tanawongsuwan R,Bobick A.Performance Analysis of TimeDistance Gait Parameters under Different Speeds//Proc of the4th International Conference on Audio-and Video-Based Biometric Person Authentication.Guildford,UK,2003:715-724. 被引量:1
  • 4Cuntoor N,Kale A,Chellappa R.Combining Multiple Evidences for Gait Recognition//Proc of the International Conference on Acoustics,Speech and Signal Processing.Hong Kong,China,2003,III:33-36. 被引量:1
  • 5Chalidabhongse T,Kruger V,Chellappa R.The UMD Database for Human Identification at a Distance.Technical Report.College Park,USA:University of Maryland,2001. 被引量:1
  • 6Gross R,Shi J.The CMU Motion of Body(MoBo)Database.Technical Report,CMU-RI-TR-01-18.Pittsburgh,USA:Carnegie Mellon University,2001. 被引量:1
  • 7Nixon M,Carter J,Shutler J,et al.Experimental Plan for Automatic Gait Recognition.Technical Report.Southampton,UK:University of Southampton,2001. 被引量:1
  • 8Sarkar S.The Human ID Gait Challenge Problem:Data Sets,Performance and Analysis.IEEE Trans on Pattern Analysis and Machine Intelligence,2005,27(2):162-177. 被引量:1
  • 9Wang Liang,Tan Tieniu.Silhouette Analysis-Based Gait Recognition for Human Identification.IEEE Trans on Pattern Analysis and Machine Intelligence,2003,25(12):1505-1518. 被引量:1
  • 10Yu Shiqi,Tan Daoliang,Tan Tieniu.A Framework for Evaluating the Effect of View Angle,Clothing and Carrying Condition on Gait Recognition//Proc of the18th International Conference on Pattern Recognition.Hong Kong,China,2006:441-444. 被引量:1

共引文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部