期刊文献+

质子交换膜电化学系统动态特性及控制策略研究进展

Research progress in dynamic operation characteristics and control strategies of electrochemical system based on proton exchange membrane
下载PDF
导出
摘要 回顾了近年来质子交换膜(PEM)电化学系统瞬态温湿度场测量和性能评价的相关研究,以及循环启停及长期运行下的系统控制策略(包括PID、神经网络及模糊控制等)。由于PEM系统运行涉及传热传质、电化学反应等复杂过程,理论建模比较复杂;数据驱动模型能够有效结合理论模型及实验数据、且求解简单。近年来新发展的智能PID控制策略在多输入多输出系统中具有较好的抗扰性和响应速度。通过与数据驱动模型结合,被认为是准确预测PEM系统的性能和寿命、提升PEM电化学系统动态性能的有效方案。 This paper introduced the relevant research on the transient temperature and humidity field measurement and performance evaluation of proton exchange membrane(PEM)electrochemical systems in recent years,and summarized the system control strategies(including PID,neuron network and fuzzy control,etc.).Intelligent PID control technologies such as fuzzy and neural networks have developed rapidly,and have better immunity and response speed in multiple-input and multiple-output systems.Since the proton exchange membrane system involves complex processes such as heat and mass transfer,electrochemical reactions,etc.,the theoretical modeling is relatively complex.Data-driven models can effectively combine theoretical models and experimental data and are simple to solve.It can provide operation data for PID real-time control and is an effective solution to improve the dynamic characteristics of PEM electrochemical system.
作者 邵誉钧 綦戎辉 SHAOYujun;QI Ronghui(School of Chemistry and Chemical Engineering,South China University of Technology,Guangzhou 510006,China)
出处 《应用化工》 CAS CSCD 北大核心 2024年第6期1360-1365,共6页 Applied Chemical Industry
基金 国家自然科学基金项目(52122605) 中央高校项目(2023ZYGXZR027) 广东省研究生教育创新计划项目(C9238014)。
关键词 电化学系统 质子交换膜 动态运行 控制策略 性能评估 electrochemical system proton exchange membrane dynamic operation control strategy performance evaluation
  • 相关文献

参考文献2

二级参考文献10

  • 1Logn B E. Scaling up microbial fuel cells and other bioelectrochemieal systems[ J ]. Applied Microbiology and Biotechnology, 2010, 85 ( 6 ) : 1665-1671. 被引量:1
  • 2Pukrushpan J,Stefanopoulou A,Peng H. Control of fuel cell breathing[ J ]. 1EEE Control Systems,2004,24(2) :30-46. 被引量:1
  • 3Kunuseh C,Puleston P F, Mayosky M A, et al. Sliding mode strategy for PEM fuel cells stacks breathing control using a super-twisting algorithm[ J]. IEEE Transactions on Control Systems Technology, 2009,17(1) :167-174. 被引量:1
  • 4Hatti M, Tioursi M, Nouibat W. Neural network approach for semicmpirical modelling of PEM fuel-cell[ C ] //IEEE International Symposium, 2006 : 1858-1863. 被引量:1
  • 5Moreira M V, Silva G E. A practical model for evaluating the performance of proton exchange membrane fuel ceils [ J ]. Renewable Energy,2009,34 (7) :1734-1741. 被引量:1
  • 6Rezazadeh A, Sedighizadeh M, Karimi M. Proton exchange membrane fuel cell control using a predictive control based on neural network[J]. Imemational Journal of Computer and Electrical Engineering, 2010, 2(1) :81-85. 被引量:1
  • 7Youssef M E, Nadi K E, Khalil M H. Lumped model for proton exchange membrane fuel cell (PEMFC) [ J ]. International Journal of Electrochemical Science,2010,5(2) :267-277. 被引量:1
  • 8Rezazadeh A, Askarzadeh A. Adaptive inverse control of proton exchange membrane fuel cell using RBF neural network [ J ]. Electrochem,2011,6 (8) :3105-3117. 被引量:1
  • 9Lippmann R P. An introduction to computing with neural nets [ J ]. IEEE Acoustics,Speech and Signal Processing Magazine,1987,4(2) :4-22. 被引量:1
  • 10El-Sharkh M Y, Ralaman A, Alam M, et al. h dynamic model for a stand-alone PEM fuel cell power plant for residential applications[J]. Journal of Power Sources ,2004,138(1-2) :199-204. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部