摘要
Single-molecule luminophores with dual-thermally activated delayed fluorescence(TADF)properties are receiving increasing attention.However,how to achieve these goals requires more in-depth studies.Herein,we demonstrate a novel example emitter,10-(5-(2-(pyridin-3-yl)-[4,5′-bipyrimidin]-6-yl)pyridin-2-yl)-10Hphenoxazine(PmPy-PXZ),enabling dual-TADF properties due to its key feature of conformational isomerization.Introducing a pyridine bridge can greatly reduce the steric hindrance and facilitate dual-stable conformations in the ground state,where the quasi-axial(QA)forms predominate.Moreover,unlike previously reported TADF molecules with dual confirmations,both theoretical and experimental measurements show that not only the quasi-equatorial(QE)forms but also the QA forms exhibit distinct TADF characteristics,which can be attributed to an additional higher reverse intersystem crossing pathway.This is the first time that dual-TADF properties of single molecules have been achieved based on conformational isomerism.Its applications in“self-doping”organic light-emitting diode and biomedical imaging have further been investigated.All these results show the good potential of such dual-band TADF emitters based on molecular conformational isomerization.
基金
supported by the National Natural Science Foundation of China(grant nos.52003186,52130304,51821002,and 52003185)
the National Key Research and Development Program of China(grant nos.2020YFA0714601 and 2020YFA0714604)
the Science and Technology Project of Suzhou(grant no.ZXL2022490)
the Suzhou Key Laboratory of Functional Nano&Soft Materials,the Collaborative Innovation Center of Suzhou Nano Science and Technology,and the 111 Project.