期刊文献+

基于面积加权GWT-GFT的水声目标识别

Underwater Acoustic Target Recognition Based on Area Weighted GWT-GFT
下载PDF
导出
摘要 由于海洋环境的复杂性,水声目标的识别具有很大的挑战性。为解决这类复杂环境下特征提取的问题,提出了一种基于面积加权的图小波变换-图傅里叶变换(GWT-GFT)的分析方法。在完成数据预处理后,为了能够凸显顶点之间的关系,提出了一种新的基于顶点三角形面积的加权方法来构建图信号;构建好的图信号通过GWT分解为多尺度图分量;然后,利用GFT将这些分量从图域变换到特征值谱域进行分析;在此基础上,提取各分量特征值谱的特征;最后,利用基于高斯核函数的支持向量机(SVM)对获取的特征向量进行分类。基于水声信号ShipsEar数据库,采用5折交叉验证方法进行验证。与现有的其它方法相比,所提的模型以36个特征在376656个样本上取得了97.22%的准确率,证明了该分析方法的有效性和鲁棒性。 Due to the complexity of the marine environment,the recognition of underwater acoustic targets poses significant challenges.To address the problem of feature extraction in such complex environments,an analysis method based on area weighted Graph Wavelet Transform-Graph Fourier Transform(GWT-GFT)is proposed.After completing data preprocessing,a novel weighted method based on the triangle area of vertices is proposed to construct the graph signal in order to highlight the relationships between vertices.The constructed graph signal is decomposed into multiple-scale graph components using GWT.Then,these components are transformed from the graph domain to the eigenvalue spectrum domain for analysis using GFT.Based on this,the characteristic eigenvalue spectra of each component are extracted.Finally,the obtained feature vectors are classified using Support Vector Machine(SVM)based on the Gaussian kernel function.Based on the ShipsEar database of underwater acoustic signals,a 5-fold cross-validation method is employed for verification.Compared with other existing methods,the proposed model achieves a recognition accuracy of 97.22%on a dataset consisting of 376656 samples using 36 features.This result demonstrates the effectiveness and robustness of the proposed analysis method.
作者 陈鑫 邵杰 王星星 杨鑫 杨世逸林 CHEN Xin;SHAO Jie;WANG Xing-xing;YANG Xin;YANG Shi-yi-lin(School of Electronic and Information Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
出处 《计算机技术与发展》 2024年第7期108-115,共8页 Computer Technology and Development
基金 教育部重点实验室开放基金(USAP2001)。
关键词 水声目标识别 GWT-GFT 特征提取 图信号处理 顶点三角形面积加权 underwater acoustic target recognition graph wavelet transform-graph Fourier transform feature extraction graph signal processing vertex triangle area weighting
  • 相关文献

参考文献7

二级参考文献46

  • 1邓晋,潘安迪,肖川,刘姗琪.基于迁移学习的水声目标识别[J].计算机系统应用,2020,29(10):255-261. 被引量:10
  • 2陈志新,徐金梧,杨德斌.基于复小波块阈值的降噪方法及其在机械故障诊断中的应用[J].机械工程学报,2007,43(6):200-204. 被引量:27
  • 3JIANG Quansheng, JIA Minping, Hid Jianzhong, et al. Machinery fault diagnosis using supervised manifold learning[J]. Mechanical Systems and Signal Processing, 2009, 23(7): 2301-2311. 被引量:1
  • 4JIANG Quansheng, LU Jiayun, JIA Mimping. Nonlinear manifold learning based fault classification methodiC]l Proceedings of the 29th Chinese Control Conference, Beijing, China, July 29-31, 2010. Beijing, 2010: 2972-2976. 被引量:1
  • 5JOLLIFFE I T. Principal component analysis[M]. New York: Springer, 1986. 被引量:1
  • 6BALAKRISHNAMA S, GANAPATHIRAJU A. Linear discriminant analysis: A brief tutorial[M]. MS: Institute for Signal and Information Processing, 1998. 被引量:1
  • 7KOHONEN T. Self-organization and associative memory[M]. London: Springer, 1988. 被引量:1
  • 8CHU-NG F R. Spectral graph theory[M]. New York: AMS Bookstore, 1997. 被引量:1
  • 9SPIELMAN D. Spectral graph theory[M]. New Haven: Yale University Press, 2009. 被引量:1
  • 10DAVID I S, SUNIL K N, PASCAL F, et al. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains[J]. Signal Process Mag., 2013, 30(3): 83-98. 被引量:1

共引文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部