期刊文献+

纤维增强复合材料缠绕管桩弯曲冲击吸能试验与模拟

Energy absorption tests and simulation of FRP wrapped pipe pile under bending impacts
下载PDF
导出
摘要 纤维增强复合材料(fiber reinforced polymer, FRP)具有较高的比强度、优异的耐腐蚀性、灵活的可设计性等优点。为解决桥梁防船撞难题,提出一种缠绕成型的FRP管桩抵御船舶撞击。分别改变管桩的壁厚、缠绕角度和冲击能量,开展弯曲冲击试验,对比分析各试件的破坏模式、动力时程响应及撞击过程中能量耗散情况。结果表明,纤维缠绕角度会改变试件的破坏模式,±75°缠绕角度的试件发生了剪切破坏,而±45°缠绕角度的试件仅在冲击区域发生局部破坏,且能恢复变形;增大壁厚能有效减小试件变形,但撞击力峰值会随之增大。采用ANSYS/LS-DYNA建立了冲击试验模型并进行有限元分析,数值模拟结果与试验值吻合较好。 Composite material fiber reinforced polymer(FRP)has advantages of higher specific strength,excellent corrosion resistance and flexible designability.Here,to solve the problem of bridge-ship collisions,FRP wrapped pipe pile was proposed to resist ship collisions.Bending impact tests were conducted by changing pipe pile wall thickness,fiber winding angle and impact energy of pipe pile,and specimens’failure mode,dynamic time history response,and energy dissipation in impact process were analyzed contrastively.The results showed that fiber winding angle can change failure modes of specimens,specimens with winding angle of±75°have shear failure,while specimens with winding angle of±45°only have local damage in impact area and can recover deformation;increasing pipe pile wall thickness can effectively reduce specimen’s deformation,but impact force peak value can increase accordingly;the software ANSYS/LS-DYNA is used to establish the impact test model for finite element simulation,the numerical simulation results agree better with test values.
作者 姚昱 方海 祝露 朱俊羽 YAO Yu;FANG Hai;ZHU Lu;ZHU Junyu(College of Civil Engineering,Nanjing Tech University,Nanjing 211816,China)
出处 《振动与冲击》 EI CSCD 北大核心 2024年第13期299-305,共7页 Journal of Vibration and Shock
基金 国家自然科学基金面上项目(52078248)。
关键词 冲击试验 复合材料(FRP) 破坏模式 吸能特性 数值模拟 impact test fiber reinforced polymer(FRP) failure mode energy absorption performance numerical simulation
  • 相关文献

参考文献7

二级参考文献68

  • 1张素梅,刘界鹏,马乐,邢涛.圆钢管约束高强混凝土轴压短柱的试验研究与承载力分析[J].土木工程学报,2007,40(3):24-31. 被引量:47
  • 2Farley G L. Energy absorption of composite materials[J]J. Composite Mat., 1983, 17: 267-279. 被引量:1
  • 3Thornton P H. Energy absorption in composite structures[J]. J. Composite Mat., 1979, 13: 247-262. 被引量:1
  • 4Yu T X, ect. Energy-absorbing capacity of grid-domed textile composites[J]. Composite Science and Technology,2000, 60: 785-800. 被引量:1
  • 5Xue P, Yu T X, Tao X M. Effect of cell geometry on the energy-absorbing capacity of grid-domed textile composites [J]. Composites Part A, 2000, 31: 861-868. 被引量:1
  • 6Tao W H, ect. Effects of material properties and crush conditions on the crush energy absorption of fiber composite rods[J]. Composite Science and Technology,1993, 47: 405-418. 被引量:1
  • 7Xue P, Yu T X, Tao X M. Hat-toped conical shell under axial compression[J]. Int. J. Mech. Sci., 2001, 43: 2125-2145. 被引量:1
  • 8Mamalis A G, ect. Energy absorption capability of fibreglass composite square frusta subjected to static and dynamic axial collapse[J]. Thin-Walled Structures, 1996,25: 269-295. 被引量:1
  • 9Mamalis A G, ect. The static and dynamic collapse of fibreglass composite automotive frame rails[J].Composite Structure, 1996, 34: 77-89. 被引量:1
  • 10Mahmood H F, ect. Crush strength characteristics of composite structures[D]. Proccedings of the Sixth Annual ASM/ESD Advanced Composite Conference, Detroit,Michingan, USA, 1990. 被引量:1

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部