期刊文献+

一类具有非线性出生率和饱和恢复率的随机SEIR传染病模型的动力学行为

Dynamic Behavior of a Random SEIR Epidemic Model with Nonlinear Birth Rate and Saturation Recovery Rate
下载PDF
导出
摘要 研究了一类具有非线性出生率和非线性接触率的随机SEIR传染病模型的绝灭性、持久性与平稳分布问题。同时利用计算机数值模拟验证了所得结论。本文所得结果改进了相关文献的结论。 A stochastic SEIR infectious disease model with nonlinear birth rate and nonlinear contact rate is stud-ied,including the extinction,persistence,and stationary distribution problems.Moreover,the obtained conclu-sions are verified through computer numerical simulation.The results obtained in this article improve the conclu-sions of relevant literature.
作者 陈丽君 CHEN Li-jun(Jinshan College,Fujian Agriculture and Foresty University,Fuzhou 350002,China)
出处 《安徽师范大学学报(自然科学版)》 2024年第3期201-210,共10页 Journal of Anhui Normal University(Natural Science)
基金 福建农林大学金山学院青年教师科研项目(KX230301) 福建省中青年教师教育科研项目(JAT210662).
关键词 非线性出生率 非线性接触率 平衡点 nonlinear birth rate nonlinear contact rate equilibrium point
  • 相关文献

参考文献2

二级参考文献12

  • 1Kermack W O,Mckendrick A G,Contribution to the mathematical theory of epidemics[J].Proc R Soc Lond Ser A,1927,115:700-721. 被引量:1
  • 2Cooke K,Driessche P,Zou Z.Interaction of maturation delay and nonlinear birth in population and epidemic models[J].J Math Biol,1999,39:332-352. 被引量:1
  • 3Zhang T L,Liu J L,Teng Z D.StabiUty of Hopf bifurcation of a delayed SIRS epidemic model with stage structure[J].Nonlinear Analysis:Real World Applications,2010,11:293-306. 被引量:1
  • 4Cui J A,Mu X X,Wan H.Saturation recovery leads to multiple endemic equilibria and backward bifurcation[J].J Theor Biol,2008,254:273-85. 被引量:1
  • 5Zhou X Y,Cui J G.Analysis of stability and bifurcation for an SEIR epidemic model with saturated recovery rate[J].Commun Nonlinear Sci Numer Simulat,2011,16:4438-4450. 被引量:1
  • 6Diekmann O,Heesterbeek J A P,Metz J A J.On the definition and the computation of the basic reproduction ratio Ko in models for infectious diseases in heterogeneous populations[J].J Math Biol,1990,28:365-382. 被引量:1
  • 7Driessche P,Watmough J.Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[J].Math Biosci,2002,180:29-48. 被引量:1
  • 8Castillo-Chavez C,Song B J.Dynamical models of tuberculosis and their applications[J].Math Biosci Eng,2004,1:361-404. 被引量:1
  • 9Guckenheimer J,Holmes P.Nonlinear Oscillations[M].Dynamical Systems and Bifurcations of Vector Fields,Berlin:Springer,1983. 被引量:1
  • 10刘玉英,肖燕妮.一类受媒体影响的传染病模型的研究[J].应用数学和力学,2013,34(4):399-407. 被引量:40

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部