期刊文献+

Cartan-Hadamard流形上关于Lorentz范数的Trudinger-Moser不等式

TRUDINGER-MOSER INEQUALITIES ON CARTAN-HADAMARD MANIFOLDS UNDER LORENTZ NORMS
下载PDF
导出
摘要 本文研究了Cartan-Hadamard流形上带Lorentz范数的Trudinger-Moser不等式.利用了相关格林函数的逐点估计以及O’Neil不等式,我们得到了该不等式的最佳常数,推广了相应欧氏空间上的结果. The aim of this paper is to study Trudinger-Moser inequalities on a Cartan-Hadamard manifold with Lorentz norm.By using the pointwise estimates of Green’s function and O’Neil inequality,we obtain the sharp constants of such inequalities,which generalize the corre-sponding results in Euclidean spaces.
作者 张佳杰 ZHANG Jia-jie(School of Mathematics and Statistics,Wuhan University,Wuhan 430072,China)
出处 《数学杂志》 2024年第4期283-292,共10页 Journal of Mathematics
基金 Supported by National Natural Science Foundation of China(12071353)。
关键词 Trudinger-Moser不等式 LORENTZ空间 RIEMANNIAN流形 负曲率 最佳常数 Trudinger-Moser inequality Lorentz space Riemannian manifold negative curvature sharp constant
  • 相关文献

参考文献1

二级参考文献29

  • 1Adams, D. R.: A sharp inequality of J. Moser for higher order derivatives. Ann. of Math., 128, 385-398 (1988). 被引量:1
  • 2Adimurthi, Yang, Y.: An interpolation of Hardy inequality and Trudinger-Moser inequality in Rn and its applications. Int. Math. Res. Not., 13, 2394 2426 (2010). 被引量:1
  • 3Aubin, T.: Sur la function exponentielle. C. R. Math. Acad. Sci. Paris, 270, 1514 (1970). 被引量:1
  • 4Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math., 138, 213-242 (1993). 被引量:1
  • 5Carron, G.: In@galit@s de Hardy sur les varidts riemanniennes non-compactes. J. Math. Pures Appl., 76, 883-891 (1997). 被引量:1
  • 6Cherrier, P.: Une in@galit@ de Sobolev sur les varidt@s Riemanniennes. Bull. Sci. Math., 103, 353-374 (1979). 被引量:1
  • 7Cherrier, P.: Cas d@xception du th@orme d'inclusion deSobolev sur les vari@t@s Riemanniennes et applica- tions. Bull. Sci. Math., 105, 235 288 (1981). 被引量:1
  • 8Fontana, L.: Sharp borderline Sobolev inequalities on compact Riemannian manifolds. Comment. Math. Helv., 68, 415 454 (1993). 被引量:1
  • 9Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, Third ed, Springer-Verlag, Berlin, 2004. 被引量:1
  • 10Kombe, I., 0zaydin, M.: Improved Hardy and Rellich inequalities on Riemannian manifolds. Trans. Amer. Math. Soc., 361, 6191-6203 (2009). 被引量:1

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部