摘要
The projectile penetration process into concrete target is a nonlinear complex problem.With the increase ofexperiment data,the data-driven paradigm has exhibited a new feasible method to solve such complex prob-lem.However,due to poor quality of experimental data,the traditional machine learning(ML)methods,whichare driven only by experimental data,have poor generalization capabilities and limited prediction accuracy.Therefore,this study intends to exhibit a ML method fusing the prior knowledge with experiment data.The newML method can constrain the fitting to experimental data,improve the generalization ability and the predic-tion accuracy.Experimental results show that integrating domain prior knowledge can effectively improve theperformance of the prediction model for penetration depth into concrete targets.
基金
supported by the National Natural Science Founda-tion of China(Grant No.12172381)
Leading Talents of Science and Technology in the Central Plain of China(Grant No.234200510016).