期刊文献+

三维电化学电催化降解1,4-二氧六环的工艺优化及反应机理

Process Optimization and Reaction Mechanism of Three-Dimensional Electrochemical Electrocatalytic Degradation of 1,4-Dioxane
下载PDF
导出
摘要 通过三维(3D)电化学电催化降解1,4-二氧六环,以去除率为指标,对电压、电解质浓度、粒子投加量3个工艺参数进行优化,并推测该工艺降解1,4-二氧六环的主要反应机理。结果表明,工艺优化后的3D电化学体系提高1,4-二氧六环去除率,最高为84.87%,其去除1,4-二氧六环的最佳工艺条件为:电压10 V,粒子投加量20 g,电解质浓度0.015 mol·L^(-1);相较于二维(2D)电化学体系,3D电化学电催化的去除率提高了60.39%。此外,pH值对1,4-二氧六环去除效果的影响不明显。在3D电化学电催化过程中,羟基自由基(·OH)和过氧自由基(·O_(2)^(-))可能发挥重要作用,1,4-二氧六环通过开环、分解一系列连锁反应生成小分子酸,最终矿化成CO_(2)和H_(2)O。 Voltage,electrolyte concentration and particle dosage were optimized for degradation of 1,4-dioxane by three-dimensional(3D)electrochemical electrocatalysis,and its main reaction mechanism estimated.The results show that the optimized 3D electrochemical system can improve the removal rate of 1,4-dioxane up to 84.87%,with the optimal process conditions of voltage at 10 V,particle dosage at 20 g and electrolyte concentration at 0.015 mol·L^(-1).This removal rate measures an increase of 60.39%compared with 2D electrochemical system.The effect of pH value on the removal effect of 1,4-dioxane was not obvious.In the 3D electrochemical electrocatalysis process,Hydroxyl radicals(·OH)and peroxyradicals(·O_(2)^(-))may play important roles.1,4-dioxane generates small acid molecules through a chain reaction of ring opening and decomposition,and finally mineralizes into CO_(2) and H_(2)O.
作者 王瑞 代智能 张文琪 傅海莹 何小松 WANG Rui;DAI Zhineng;ZHANG Wenqi;FU Haiying;HE Xiaosong(School of Environmental Science and Engineering,Xiamen University of Technology,Xiamen 361024,China;Chinese Academy of Environmental Sciences,Beijing 100012,China)
出处 《厦门理工学院学报》 2024年第3期81-87,共7页 Journal of Xiamen University of Technology
关键词 1 4-二氧六环 三维电化学 电催化 工艺优化 反应机理 1,4-dioxane three-dimensional electrochemistry electrocatalysis process optimization reaction mechanism
  • 相关文献

参考文献4

二级参考文献54

  • 1黄昱,李小明,杨麒,曾光明,张振.电-Fenton法预处理青霉素废水的降解规律研究[J].环境工程学报,2007,1(8):20-25. 被引量:8
  • 2Li M, Mathieu J, Yang Y, et al. Widespread distribution of soluble di- iron monooxygenase (SDIMO) genes in Arctic groundwater impacted by 1,4-dioxane[J]. Environmental Science and Technology, 2013, 47(17):9950-9958. 被引量:1
  • 3Ding F, Hu X, Liu Y. Improvement of lithium interface stability with 1,4-dioxane pretreatment[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2007, 22(3):494-498. 被引量:1
  • 4Kraybill H F. Global distribution of carcinogenic pollutants in water[J].Annals of the New York Academy of Sciences, 1977, 298:80-89. 被引量:1
  • 5Abe A. Distribution of 1,4-dioxane in relation to possible sources in the water environment [J]. Science of The Total Environment, 1999, 227:41-47. 被引量:1
  • 6Nyer E K, Kramer V, Valkenburg N. Biochemical effects on contaminant fate and transport [J]. Groundwater Monitoring & Remediation, 1991, 11 (2):80-82. 被引量:1
  • 7Yasuhara A, Shiraishi H, Nishikawa M. et al. Organic components in leachates from hazardous waste disposal sites[J]. Waste Management and Research, 1999, 17(3):186-197. 被引量:1
  • 8Sei K, Miyagaki K, Kakinoki T, et al. Isolation and characterization of bacterial strains that have high ability to degrade 1,4-dioxane as a sole carbon and energy source[J]. Biodegradation, 2013, 24(5):665-674. 被引量:1
  • 9USEPA. Drinking Water Standards and Health Advisories[S]. Washington DC: Office of Water, USEPA, EPA822-B-00-001, 2000. 被引量:1
  • 10Stickney J A, Sager S L, Clarkson J R, et al. An updated evaluation of the carcinogenic potential of 1,4-dioxane[J]. Regulatory Toxicology and Pharmacology, 2003, 38(2): 183-195. 被引量:1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部