期刊文献+

基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术

Temperature error compensation of fiber optic gyro angular measurement based on adaptive wavelet echo neural network
下载PDF
导出
摘要 基于光纤陀螺的测角仪可以实现对各项角运动参数的一体化动态精密测量,但在实际应用中,光纤陀螺测角仪受到温度变化的影响,导致测量精度下降。针对这一问题,本文提出了一种基于自适应小波回声神经网络的光纤陀螺测角仪温度误差补偿技术。为了提高温度误差建模的进度,提高传统神经网络的逼近能力,通过自适应前向线性预测滤波器对建模用测角仪温度漂移数据进行预处理,并采用自适应小波回声神经网络建立温度漂移模型,能够避免传统神经网络结构设计的盲目性和局部最优等问题,增强了网络学习能力和泛化能力,并利用自适应律代替神经网络梯度进行网络训练,提升神经网络的逼近精度和收敛速度。实验结果表明,该模型可以提高光纤陀螺测角仪的测量精度和环境适应性,为光纤陀螺测角仪的性能优化和实际应用提供了可靠的技术支撑。 Based on the fiber optic gyroscope,an angular motion integrated measurement sensor can achieve integrated and dynamic precision measurement of various angular motion parameters.However,in practical applications,the fiber optic gyroscope is susceptible to temperature changes,leading to a decrease in measurement accuracy.Addressing this issue,this paper proposes a temperature error compensation technique for the angular motion integrated measurement sensor based on an adaptive wavelet echo state neural network.To advance the progress of temperature error modeling and enhance the approximation capability of traditional neural networks,an adaptive forward linear prediction filter is applied to preprocess temperature drift data from the gyroscopes used for modeling.The paper adopts an adaptive wavelet echo state neural network to establish a temperature drift model,aiming to avoid issues such as the blind design of traditional neural network structures and local optima.This approach enhances the network's learning and generalization abilities.Additionally,an adaptive law is employed to replace neural network gradients during network training,thereby improving the approximation accuracy and convergence speed of the neural network.Experimental results demonstrate that the proposed model can enhance the measurement accuracy and environmental adaptability of angular motion integrated measurement sensor,providing reliable technical support for the performance optimization and practical applications of these sensors.
作者 朱纬 王敏林 董雪明 Zhu Wei;Wang Minlin;Dong Xueming(Shanghai Institute of Quality Inspection,Shanghai 201114,China;Changcheng Institute of Metrology&Measurement,Beijing 100095,China)
出处 《电子测量技术》 北大核心 2024年第8期189-194,共6页 Electronic Measurement Technology
基金 上海市市场监督管理局科技项目(2023-35)资助。
关键词 测角仪 温度误差建模 小波回声神经网络 粒子群优化 自适应前向线性预测滤波器 angular measurement sensor temperature error modeling wavelet echo neural network particle swarm optimization adaptive forward linear prediction filter
  • 相关文献

参考文献6

二级参考文献69

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部