期刊文献+

基于EMD和CatBoost算法的改进时间序列模型——以大连市PM_(2.5)预测为例

Improved time series models based on EMD and CatBoost algorithms:taking PM_(2.5) prediction of Dalian City as an example
原文传递
导出
摘要 【目的】解决传统大气PM_(2.5)浓度时序预测时精度较低问题,减少PM_(2.5)时间序列的非线性、高噪声、不平稳与波动性对预测的影响,从而更精确地预测PM_(2.5)浓度。【方法】以2014年1月1日至2022年1月31日大连市雾霾天气时PM_(2.5)数据为例,提出了经验模态分解(EMD)、分类提升(CatBoost)、自回归综合移动平均模型(ARIMA)组合的混合机器学习时间序列模型,并与传统自回归模型(AR)、ARIMA,以及只加入EMD方法后的混合模型进行比较。【结果】混合模型EMD-CatBoost-ARIMA较原始序列均方根误差(RMSE)改进20.76%,平均绝对值误差(MAE)改进17.40%,希尔不等系数(TIC)改进29.17%。【结论】对于高熵值的重构序列,EMD分解方法和CatBoost算法能够显著提升PM_(2.5)时间序列模型的预测性能。相比较传统时间序列模型,EMD-CatBoost-ARIMA模型对大气PM2.5浓度预测性能较高。 【Objective】The study aims to address the problem of low accuracy in traditional PM_(2.5) concentration time series prediction,and to reduce the impact of nonlinearity,high noise,instability and volatility on the prediction of PM_(2.5) time series,to predict PM_(2.5) concentration more accurately.【Method】The haze PM_(2.5) data of Dalian City from January 1,2014 to January 31,2022 was used as an example.In this study,a hybrid machine learning time series model with the combination of empirical modal decomposition(EMD),classification boosting(CatBoost)and autoregressive integrated moving average model(ARIMA)was proposed.It was compared with the traditional autoregressive model(AR),ARIMA and the hybrid model with only the EMD method.【Result】The hybrid model EMD-CatBoost-ARIMA improved the root mean square error(RMSE)of the original sequence by 20.76%,the mean absolute error(MAE)by 17.40%,and the theil inequality coefficient(TIC)by 29.17%.【Conclusion】For reconstructed sequences with high entropy values,the EMD decomposition method and CatBoost algorithm can significantly improve the prediction performance of PM_(2.5) time series models.Compared with the traditional time series models,the EMD-CatBoost-ARIMA model has higher performance in PM_(2.5) concentration prediction.
作者 赵凌霄 李智扬 屈磊磊 ZHAO Lingxiao;LI Zhiyang;QU Leilei(College of Marine and Civil Engineering,Dalian Ocean University,Dalian 116023,China;Department of Atmospheric and Oceanic Sciences,Fudan University,Shanghai 200438,China;College of Civil Engineering,Chongqing University,Chongqing 400044,China;College of Information Engineering,Dalian Ocean University,Dalian 116023,China)
出处 《南京林业大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期268-274,共7页 Journal of Nanjing Forestry University:Natural Sciences Edition
基金 辽宁省博士科研启动基金项目(2020-BS-216) 国家级大学生创新创业训练计划(202110158002) 辽宁省大学生创新创业训练计划(S202210158006)。
关键词 PM_(2.5)浓度 经验模态分解(EMD) 时间序列模型 混合模型 CatBoost算法 机器学习 大连市 PM_(2.5)concentration empirical modal decomposition(EDM) time series model hybrid model CatBoost algorithm machine learning Dalian City
  • 相关文献

参考文献12

二级参考文献77

  • 1徐卫国,田伟利,张清宇,丁淑英,郭慧.灰色关联分析模型在环境空气质量评价中的修正及应用研究[J].中国环境监测,2006,22(3):63-66. 被引量:19
  • 2Grivas,G.,A.Chaloulakou.Artificial neural network models for prediction of PM10 hourly concentrations,in the Greater Area of Athens[J].Atmospheric Environment,2006,40 (7):1216-1229. 被引量:1
  • 3Paschalidou,A.K.,S.Karakitsios,S.Kleanthous,et al.Forecas ting hourly PM10 concentration in Cyprus through artificial neu ral networks and multiple regression models[J].Environment Pollution Research,2011,18(1):316-327. 被引量:1
  • 4Reilly,P.Time series modeling of global mean temperature for managerial decision-making[J].Journal of Environment Management,2005,76 (1):61-70. 被引量:1
  • 5Jenkins,G.M.,G.C.Riesel.Time Series Analysis:Forecasting and Control[M].NY:Prentice Hall Inc,1994. 被引量:1
  • 6Shumway,R.H.,D.S.Stoffer.Time Series Analysis and It's Applications[M].New York:Springer Science Business Media,2006:79-99. 被引量:1
  • 7Kumar,U.,V.K.Jain.ARIMA forecasting of ambient air pollutants (O3,NO,NO2 and CO)[J].Stochastic Environmental Research and Risk Assessment,2010,24(5):751-760. 被引量:1
  • 8Cobourn,W.G.An enhanced PM2.5 air quality forecast model based on nonlinear regression and back-trajectory concentrations[J].Atmospheric Environment,2010,44 (25):3015-3023. 被引量:1
  • 9Chelani,A.B.,S.Devotta.Prediction of ambient carbon monox ide concentration using nonlinear time series analysis technique[J].Transportation Research,2007,12 (8):596-600. 被引量:1
  • 10MORRIS R D, NAUMOVA E N, MUNASINGHE R L. Ambient air pollution and hospitalization for congestive heart failure among elderly people in seven large US cit- ies [ J ]. American Journal of Public Health, 1995, 85 (10) : 1 361-1 365. 被引量:1

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部