期刊文献+

电信网络诈骗犯罪防治研究综述

Review of Research on the Prevention and Control of Telecom Network Fraud Crimes
下载PDF
导出
摘要 随着互联网和人工智能的发展,电信网络诈骗犯罪处于高发态势,严重危害人民群众的财产安全。电信网络诈骗犯罪的防范和治理不仅受到了国家和学者的重视,而且成为了网络安全研究热点。首先介绍了基于诈骗电话、诈骗信息数据的电信网络诈骗防范研究现状;其次介绍了关于诈骗网站和恶意网站识别的研究现状;最后基于目前电信网络诈骗犯罪预防的需求,分析深度学习和大语言模型性能优势,对未来诈骗网站识别的可研究方向进行了探讨和展望。 With the development of the Internet and artificial intelligence,telecom network fraud crimes are at a high rate,seriously endangering people's property security.The prevention and control of telecom network fraud crimes have not only attracted the attention of the countries and scholars,but also become a hot spot in network security research.The current research status of telecom network fraud prevention is firstly introduced based on fraudulent calls and fraud information data.Secondly,the current research status of fraud website and malicious website identification is described.Finally,based on the current needs of crime prevention in telecom network fraud,the performance advantages of deep learning and large language model are analyzed,and the research directions for future fraud website identification are discussed and prospected.
作者 魏嘉迪 赵晓凡 陈丽 宋震 WEI Jiadi;ZHAO Xiaofan;CHEN Li;SONG Zhen(School of Information and Cyber Security,People's Public Security University of China,Beijing 102623,China;Zhengzhou Public Security Bureau,Zhengzhou 450000,China)
出处 《中国人民公安大学学报(自然科学版)》 2024年第2期102-108,共7页 Journal of People’s Public Security University of China(Science and Technology)
基金 中国人民公安大学网络空间安全执法技术双一流创新研究专项(2023SYL07)。
关键词 电信网络诈骗 犯罪治理 网站识别 深度学习 大语言模型 telecom network fraud crime governance website identification deep learning large lan⁃guage model
  • 相关文献

参考文献13

二级参考文献75

  • 1李萍.涉新冠疫情犯罪案件若干问题研究[J].刑法论丛,2020,6(4):22-38. 被引量:1
  • 2侯汉清.分类法的发展趋势简论[J].情报科学,1981,2(1):58-63. 被引量:15
  • 3叶强,张洁.基于遗传算法的多分类器融合模型在信用评估中的应用[J].哈尔滨工业大学学报,2006,38(9):1504-1505. 被引量:7
  • 4Anti-Phishing Working Group [EB/OL]. http://www.antiphishing. org, 2008-01/2011-12-15. 被引量:1
  • 5PhishTank [EB/OL]. http://www.phishtank.com, 2011-04/2011-12-15. 被引量:1
  • 6Engin Kirda, Christopher Kruegel. Protecting Users against Phishing Attacks[J]. The Computer Journal, 2006, 49(05):554-561. 被引量:1
  • 7Ian Fette, Norman Sadeh, Anthony Tomasic. Learning to Detect Phishing Emails[C]. In Proc. of the WWW 2007, Alberta, Canada, May 8-12, 2007: 649-656. 被引量:1
  • 8Chenfeng Vincent Zhou, Christopher Leckie, Shanika Karunasekera. Collaborative Detection of Fast Flux Phishing Domains[J]. Journal of Networks, 2009, 4(01):75-84. 被引量:1
  • 9D. Kevin McGrath, Minaxi Gupta. Behind Phishing: An Examination of Phisher Modi Operandi[C]. In Proc. of the 1st Usenix Workshop on Large- Scale Exploits and Emergent Threats, California USA, April 15 2008:1-8. 被引量:1
  • 10Tyler Moore, Richard Clayton. The Impact of Incentives on Notice and Take-down[C]. In Proc. of the 7th Workshop on the Economics of Information Security, New Hampshire USA, June 25-28 2007: 1-24. 被引量:1

共引文献139

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部