摘要
面向铁路全生命周期沿线地理地质环境精准感知需求,针对持续变化的铁路地理与地质数据长期以来各自独立表达、分散管理、难以深度融合等问题,提出了铁路地理地质数据“本体域-变化域-状态域”三域关联的集成表达模型,首先,以地理地质环境要素“时空变化”链式关联为中心,定义了时空变化的参与者(要素)、驱动力(事件)和呈现模式(过程),然后,定义了状态级-实体级-过程级多层次时空变化关联关系,构建了轴面一体的铁路地理地质数据知识图谱,描述了“状态域-变化域-本体域”纵向映射轴“、对象-事件-过程”横向关联面之间的轴面关联关系,提出了知识图谱引导的“状态级-实体级-过程级”时空变化多域关联。以铁路高陡边坡施工典型应用为例,分析了该模型的可行性,进一步证明其重要意义和巨大应用潜力。
Objectives Facing the needs of digital twins for the whole life cycle of railway,the problems exist in independent expression,decentralized management and difficult in-depth integration of the continuously changing railway geographic and geologic data for a long time.Methods This paper takes railway geographic and geologic elements as an inseparable whole,and proposes an integrated expression model of the three-domain association for railway geographic and geologic data,which includes ontology domain,change domain and state domain.First,it takes spatial-temporal change as the center and defines the change participants(elements),drivers(events)and presentation modes(processes).Then,it defines a multi-level spatial-temporal change association relationship between state level,entity level and process level.Finally,it constructs a knowledge graph of railway geologic data with multi-domain association,and finely portrays the semantic association relationship between three aspects of geological elements,events and processes.Results and Conclusions The importance and potential of the model in typical tunnel construction applications are analyzed.
作者
张利国
丁雨淋
朱庆
陈曦
李函侃
郭永欣
王玮
ZHANG Liguo;DING Yulin;ZHU Qing;CHEN Xi;LI Hankan;GUO Yongxin;WANG Wei(Faculty of Geosciences and Environmental Engineering,Southwest Jiaotong University,Chengdu611756,China;State Key Laboratory of Rail Transit Engineering Informatization,Xi'an710043,China)
出处
《武汉大学学报(信息科学版)》
EI
CAS
CSCD
北大核心
2024年第6期1018-1027,共10页
Geomatics and Information Science of Wuhan University
基金
国家自然科学基金(41941019)
西藏自治区科技计划项目(XZ202101ZD0001G)。
关键词
铁路地理地质环境
铁路地理地质数据
多域关联
知识图谱
时空变化
railway geographic and geologic environment
railway geographic and geologic data
multi-domain association
knowledge graph
spatial-temporal change