期刊文献+

基于Swin Transformer目标全景分割的三峡库首土质滑坡识别

Identification of soil landslides at the head of the Three Gorges Reservoir based on swin transformer target panoramic segmentation
下载PDF
导出
摘要 【目的】滑坡识别是解决山区地质灾害隐患在哪里的关键。尤其人工智能是深度学习方法开始被广泛应用于目标识别领域,但对于多植被山区复杂环境下的滑坡隐患识别,存在着模型单一、精度较差等问题。【方法】故文章提出一种基于Swin Transformer(Shift Windows Transformer)作为骨干网络结合目标全景分割的智能识别方法,对三峡库首区域土质滑坡开展识别。将三峡库首的485处土质滑坡制作成样本集,并分为训练集和测试集。将训练集加载进Swin Transformer模型中进行训练,模型采用自注意力机制对训练集提取特征,构建特征图,测试集验证特征图的识别精度,保留识别精度最高的特征图。最终以此实现滑坡目标与背景区域的有效区分进而完成隐患识别,同时与DeepLab V3模型进行对比。【结果】结果显示:Swin Transformer模型在识别精度和识别速度上都要高于DeepLab V3模型,在三峡库首的试验中准确率可以达到83.55%,单张图片预测时间为0.18 s。【结论】结果表明:该方法能够在多植被山区复杂环境下快速识别土质滑坡,可为多植被山区的滑坡灾害调查提供参考。 [Objective]Landslide identification is the key to solve the problem of where the geological disaster hazards are in mountainous areas.Artificial intelligence,especially deep learning method,began to be widely used in the field of target recognition,but for landslide hazard recognition in complex environments in multi-vegetation mountainous areas,there are problems such as single model and poor accuracy.[Methods]Therefore,an intelligent recognition method based on Swin Transformer(Shift Windows Transformer) as backbone network combined with panoramic target segmentation is proposed in this paper to identify soil landslide in the head area of the Three Gorges Reservoir.The 485 soil landslides at the head of the Three Gorges Reservoir are made into a sample set and divided into a training set and a test set.The training set is loaded into the Swin Transformer model for training.The model adopts the self-attention mechanism to extract features from the training set and construct feature maps.Finally,this method can achieve effective differentiation between the landslide target and the background area,and then complete the potential hazards identification.At the same time,it is compared with DeepLab V3 model.[Results]The result show that the Swin Transformer model is higher than the DeepLab V3 model in recognition accuracy and recognition speed,and the accuracy can reach 83.55% in the experiment at the head of the Three Gorges reservoir,and the prediction time of a single image is 0.18 s.[Conclusion]The result show that the method can rapidly identify soil landslides in the complex environment of multi-vegetation mountainous areas,and can provide a reference for landslide hazard investigation of multi-vegetation mountainous areas.
作者 邓志勇 黄海峰 李清清 周红 张瑞 柳青 董志鸿 DENG Zhiyong;HUANG Haifeng;LI Qingqing;ZHOU Hong;ZHANG Rui;LIU Qing;DONG Zhihong(National Field Observation and Research Station of Landslides in Three Gorges Reservoir Area of Yangtze River,China Three Gorges University,Yichang 443002,Hubei,China;Key Laboratory of Geological Hazards on Three Gorges Reservoir Area,Ministry of Education,China Three Gorges University,Yichang 443002,Hubei,China;Hubei Key Laboratory of Intelligent Vision Based Monitoring for Hydroelectric Engineering,China Three Gorges University,Yichang 443002,Hubei,China;Yichang Geological Environment Monitoring Station Yichang,Yichang 443002,Hubei,China)
出处 《水利水电技术(中英文)》 北大核心 2024年第4期176-185,共10页 Water Resources and Hydropower Engineering
基金 国家自然科学基金(U21A2031,42007237,42107489) 三峡库区地质灾害教育部重点实验室开放基金(2020KDZ09)。
关键词 三峡库首 土质滑坡 Swin Transformer 全景分割 隐患识别 滑坡 the Three Gorges Reservoir Head soil landslide Swin Transformer panoramic segmentation hazard identification landslide
  • 相关文献

参考文献14

二级参考文献106

共引文献103

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部